keras实现multi-head self-attention代码
时间: 2023-09-19 12:05:21 浏览: 223
collaborative-attention:多头注意力代码
5星 · 资源好评率100%
### 回答1:
以下是使用Keras实现multi-head self-attention的示例代码:
```python
import tensorflow as tf
from tensorflow import keras
class MultiHeadAttention(keras.layers.Layer):
def __init__(self, num_heads, d_model):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = keras.layers.Dense(d_model)
self.wk = keras.layers.Dense(d_model)
self.wv = keras.layers.Dense(d_model)
self.dense = keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))
output = self.dense(concat_attention)
return output, attention_weights
def scaled_dot_product_attention(q, k, v, mask):
matmul_qk = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
if mask is not None:
scaled_attention_logits += (mask * -1e9)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v)
return output, attention_weights
```
在这个例子中,`MultiHeadAttention`是一个继承自Keras的`Layer`的类,它实现了multi-head self-attention。具体来说,`MultiHeadAttention`包括以下几个步骤:
1. 将输入的`q`、`k`、`v`通过三个全连接层(分别是`self.wq`、`self.wk`、`self.wv`)映射到`d_model`维空间。
2. 将映射后的`q`、`k`、`v`分别按照`num_heads`个头进行切分,并将切分后的张量进行维度重排,以便于后续计算。
3. 对切分后的`q`、`k`、`v`进行scaled dot-product attention操作,得到加权后的`v`,以及注意力权重。
4. 将加权后的`v`进行维度重排和拼接,并通过一个全连接层进行线性变换,得到最终的输出。
在实现过程中,需要用到`scaled_dot_product_attention`函数,该函数实现了scaled dot-product attention的计算。具体来说,它包括以下几个步骤:
1. 将`q`和`k`进行矩阵乘法,并除以$\sqrt{d_k}$得到相似度矩阵。
2. 如果有掩码,则将掩码中的位置设置为$-\infty$,以便在softmax之后得到0的注意力权重。
3. 对相似度矩阵进行softmax操作,得到注意力权重。
4. 将注意力权重和`v`进行矩阵乘法,得到加权后的`v`。
需要注意的是,这个实现中的`mask`参数是可选的,如果没有传入掩码,则不进行掩码操作。
### 回答2:
Keras是一个开源的深度学习库,可以用来构建和训练各种类型的神经网络模型。在Keras中实现多头自注意力机制(Multi-head Self-Attention)需要用到自定义层(Custom Layer)来定义注意力机制和多头机制。
以下是一个使用Keras实现Multi-head Self-Attention的代码示例:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class MultiHeadSelfAttention(keras.layers.Layer):
def __init__(self, embed_dim, num_heads=8):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError("Embedding dimension must be divisible by number of heads.")
self.projection_dim = embed_dim // num_heads
self.query_dense = layers.Dense(embed_dim)
self.key_dense = layers.Dense(embed_dim)
self.value_dense = layers.Dense(embed_dim)
self.combine_heads = layers.Dense(embed_dim)
def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)
query = self.separate_heads(query, batch_size)
key = self.separate_heads(key, batch_size)
value = self.separate_heads(value, batch_size)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(attention, (batch_size, -1, self.embed_dim))
output = self.combine_heads(concat_attention)
return output
# 测试代码
embed_dim = 64
num_heads = 4
inputs = keras.Input(shape=(32, embed_dim))
attention_layer = MultiHeadSelfAttention(embed_dim, num_heads)
outputs = attention_layer(inputs)
print(outputs.shape)
```
以上代码定义了一个`MultiHeadSelfAttention`类来实现多头自注意力机制。该类继承自Keras层(`keras.layers.Layer`),并在`call`方法中定义了注意力机制的计算流程。在测试代码中,我们输入形状为`(batch_size, seq_length, embed_dim)`的输入张量,并给定了嵌入维度(`embed_dim`)和注意力头数(`num_heads`)。最终的输出形状也是`(batch_size, seq_length, embed_dim)`。
希望以上代码对你有所帮助!
阅读全文