circle loss的pytorch实现
时间: 2023-06-07 21:09:10 浏览: 229
很高兴能为您解答问题。关于Circle loss的PyTorch实现,您可以参考以下代码:
```python
import torch
import torch.nn as nn
class CircleLoss(nn.Module):
def __init__(self, m, s):
super(CircleLoss, self).__init__()
self.m = m
self.s = s
def forward(self, features, targets):
# calculate cosines of angles
cosines = nn.functional.linear(nn.functional.normalize(features),
nn.functional.normalize(self.weight))
# calculate sine of angles
sines = torch.sqrt(1 - torch.pow(cosines, 2.0))
# calculate distances between embeddings and weights
distances = torch.zeros(len(targets), self.weight.size(0), device=features.device)
for i, t in enumerate(targets):
distances[i] = torch.sum(torch.pow(features[i] - self.weight[t], 2.0), 1)
# calculate margins for losses
ms = torch.zeros(len(targets), device=features.device)
ms.scatter_(1, targets.unsqueeze(1), self.m)
margins = torch.zeros(len(targets), self.weight.size(0), device=features.device)
margins.fill_diagonal_(1 - ms)
margins = self.s * (cosines * margins - sines)
# calculate circle loss
losses = torch.zeros(len(targets), device=features.device)
for i in range(len(targets)):
losses[i] = nn.functional.softplus(torch.exp(distances[i] / self.s) + margins[i, targets[i]] - 1)
return losses.mean()
```
这是一个基于PyTorch实现的Circle loss,其中m和s分别代表margin和scale hyperparameters。Circle loss是一种人脸识别中使用的损失函数,它可以提高对距离小的样本对之间的判别能力。具体实现步骤会涉及到对向量的归一化、余弦相似度计算、角度计算等。如果您需要更详细的解释和帮助,可以参考论文Circle Loss: A Unified Perspective of Pair Similarity Optimization和PyTorch官方文档。
阅读全文