用MATLAB实现二元霍夫曼编码计算平均码长;计算编码效率;可输入各个信源符号概率;可判断输入概率的正确性;能够验证编码效率的最佳性;能够计算冗余度;能够计算信源熵
时间: 2024-12-13 13:18:42 浏览: 65
霍夫曼编码的matlab实现.docx
5星 · 资源好评率100%
在MATLAB中,要实现二元霍夫曼编码,并进行相应的计算,你可以按照以下步骤操作:
1. **输入信源符号概率**:
使用`input`函数让用户输入各信源符号的概率,存储在一个向量`prob`中。确保它们加起来等于1,因为概率之和应等于1。
```matlab
prob = input('请输入信源符号的概率(以逗号分隔): ', 's');
prob = str2num(prob) / sum(prob);
```
2. **构建霍夫曼树**:
使用`huffmandict`函数,传入概率向量,得到霍夫曼树的结构。
```matlab
[parent, ~] = huffmandict(prob);
huffmanTree = huffmantree(parent);
```
3. **编码和计算码长**:
`huffmanencode`函数用于编码,`cumsum`函数计算每个符号的平均码长。
```matlab
codes = huffmanencode(prob, huffmanTree);
avgCodeLength = cumsum(prob .* length(codes));
```
4. **计算编码效率**:
编码效率即平均信息熵,也就是平均码长除以自然对数2(以比特为单位)。
```matlab
efficiency = avgCodeLength ./ log2(size(prob));
```
5. **验证输入概率的正确性**:
检查编码后的霍夫曼树是否满足霍夫曼编码的要求,如所有非终端节点的权值总和都大于其子节点的权值。
6. **计算冗余度**:
可以通过比较原始信源熵(可以用信源的概率乘以log2概率求和)与编码后的平均码长来计算冗余度。
```matlab
sourceEntropy = -sum(prob .* log2(prob));
redundancy = efficiency - sourceEntropy;
```
7. **计算信源熵**:
已经在上一步计算过,无需再次计算。
8. **显示结果**:
可以输出上述各项计算结果。
```matlab
disp(['平均码长: ', num2str(avgCodeLength)])
disp(['编码效率: ', num2str(efficiency)])
disp(['冗余度: ', num2str(redundancy)])
```
阅读全文