stm32 TIM_ITConfig()和TIM_GetFlagStatus()的区别

时间: 2024-06-05 19:11:01 浏览: 171
STM32中的TIM_ITConfig()和TIM_GetFlagStatus()都是用于控制定时器中断的函数,但是它们的作用有所不同。 TIM_ITConfig()函数用于开启或关闭定时器中断,并指定中断类型。而TIM_GetFlagStatus()函数则用于查询定时器标志位的状态,以确定中断是否已经被触发。 具体来说,TIM_ITConfig()函数可以启用或禁用以下三种类型的中断: 1. 定时器溢出中断:当定时器的计数器达到了重装载值时,会触发该中断。 2. 输出比较中断:当定时器的计数器值等于CCR1、CCR2、CCR3或CCR4寄存器中的值时,会触发该中断。 3. 更新中断:当定时器的自动重装载计数器被重新加载时,会触发该中断。 相比之下,TIM_GetFlagStatus()函数用于查询定时器的中断标志位,包括以下几种标志位: 1. 定时器溢出标志位:当定时器的计数器达到了重装载值时会置位。 2. 输出比较标志位:当定时器的计数器值等于CCR1、CCR2、CCR3或CCR4寄存器中的值时,会置位该标志位。 3. 更新标志位:当定时器的自动重装载计数器被重新加载时,会置位该标志位。 因此,TIM_ITConfig()函数主要用于控制中断的开启和关闭,而TIM_GetFlagStatus()函数则用于查询中断是否已经触发。
相关问题

GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;// 初始化GPIO口RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_Init(GPIOA, &GPIO_InitStructure);// 初始化串口RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);USART_InitStructure.USART_BaudRate = 115200;USART_InitStructure.USART_WordLength = USART_WordLength_8b;USART_InitStructure.USART_StopBits = USART_StopBits_1;USART_InitStructure.USART_Parity = USART_Parity_No;USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_InitStructure.USART_Mode = USART_Mode_Tx;USART_Init(USART1, &USART_InitStructure);USART_Cmd(USART1, ENABLE);ADC_InitTypeDef ADC_InitStructure;TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;// 初始化ADC模块RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;ADC_InitStructure.ADC_ScanConvMode = DISABLE;ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;ADC_InitStructure.ADC_NbrOfChannel = 1;ADC_Init(ADC1, &ADC_InitStructure);ADC_Cmd(ADC1, ENABLE);// 初始化定时器RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);TIM_TimeBaseStructure.TIM_Period = 72000000 / 1000 - 1; // 计数器自动重装值TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 分频系数TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; // 计数器向上计数TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);// 配置定时器触发ADC采样TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update);ADC_ExternalTrigConvCmd(ADC1, ENABLE);// 初始化定时器中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);void TIM3_IRQHandler(void) { if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM3, TIM_IT_Update); ADC_SoftwareStartConvCmd(ADC1, ENABLE); while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); uint16_t adcValue = ADC_GetConversionValue(ADC1); USART_SendData(USART1, adcValue >> 8); while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); USART_SendData(USART1, adcValue & 0xff); while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); }}

这段代码是 STM32F103C8T6 开发板使用 ADC 和 USART 模块进行模拟量采集并通过串口传输的代码。 1. 初始化 GPIO 口和串口 2. 初始化 ADC 模块 3. 初始化定时器,配置定时器触发 ADC 采样和定时器中断 4. 中断服务函数中,通过 ADC 获取模拟量数值,然后通过 USART 将数值通过串口传输出去 代码注释如下: ``` GPIO_InitTypeDef GPIO_InitStructure; // 定义 GPIO 初始化结构体 USART_InitTypeDef USART_InitStructure; // 定义 USART 初始化结构体 ADC_InitTypeDef ADC_InitStructure; // 定义 ADC 初始化结构体 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; // 定义定时器初始化结构体 NVIC_InitTypeDef NVIC_InitStructure; // 定义中断初始化结构体 // 初始化 GPIO 口 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 使能 GPIOA 时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 初始化 GPIOA 的第 0 位 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; // GPIOA 的第 0 位设置为模拟输入模式 GPIO_Init(GPIOA, &GPIO_InitStructure); // 初始化 GPIOA // 初始化串口 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); // 使能 USART1 时钟 USART_InitStructure.USART_BaudRate = 115200; // 设置波特率为 115200 USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 每个数据帧 8 位 USART_InitStructure.USART_StopBits = USART_StopBits_1; // 一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No; // 无奇偶校验 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 无硬件流控制 USART_InitStructure.USART_Mode = USART_Mode_Tx; // USART1 发送模式 USART_Init(USART1, &USART_InitStructure); // 初始化 USART1 USART_Cmd(USART1, ENABLE); // 使能 USART1 // 初始化 ADC 模块 RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); // 使能 ADC1 时钟 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; // 独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; // 禁止扫描模式 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; // 连续转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO; // 选择定时器 3 触发采样 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; // 数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; // 采样通道数为 1 ADC_Init(ADC1, &ADC_InitStructure); // 初始化 ADC1 ADC_Cmd(ADC1, ENABLE); // 使能 ADC1 // 初始化定时器 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); // 使能 TIM3 时钟 TIM_TimeBaseStructure.TIM_Period = 72000000 / 1000 - 1; // 设置计数器自动重装值,即定时器周期为 1ms TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 设置分频系数,即定时器时钟为 1MHz TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 设置时钟分割 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; // 计数器向上计数 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); // 初始化定时器 TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update); // 配置定时器触发 ADC 采样 ADC_ExternalTrigConvCmd(ADC1, ENABLE); // 使能 ADC 外部触发转换 // 初始化定时器中断 TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE); // 使能定时器更新中断 NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; // 设置定时器 3 的中断向量 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; // 中断抢占优先级为 0 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; // 中断响应优先级为 0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // 使能中断 NVIC_Init(&NVIC_InitStructure); // 初始化中断向量表 // 定时器中断服务函数 void TIM3_IRQHandler(void) { if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) { // 判断是否为定时器更新中断 TIM_ClearITPendingBit(TIM3, TIM_IT_Update); // 清除定时器更新中断标志位 ADC_SoftwareStartConvCmd(ADC1, ENABLE); // 开始 ADC 转换 while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); // 等待 ADC 转换完成 uint16_t adcValue = ADC_GetConversionValue(ADC1); // 获取 ADC 转换结果 USART_SendData(USART1, adcValue >> 8); // 发送高 8 位 while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 等待数据发送完成 USART_SendData(USART1, adcValue & 0xff); // 发送低 8 位 while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 等待数据发送完成 } } ```

stm32f103zet6 tim+adc

STM32F103ZET6是一款STM32系列的微控制器,具有很强的性能和可靠性,广泛应用于各种嵌入式系统中。其中,TIM(定时器)和ADC(模数转换器)是STM32F103ZET6中非常重要的外设,可以用来完成各种任务。 下面是一个使用TIM2和ADC1实现定时采集模拟信号并进行处理的例程,供参考: ``` #include "stm32f10x.h" #define ADC1_DR_Address ((u32)0x4001244C) u16 ADC_ConvertedValue; //存放ADC转换结果 void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) //检查TIM2更新中断是否发生 { TIM_ClearITPendingBit(TIM2, TIM_IT_Update); //清除TIM2更新中断标志位 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //启动ADC转换 while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); //等待转换完成 ADC_ConvertedValue = ADC_GetConversionValue(ADC1); //读取ADC转换结果 //进行处理,例如将转换结果通过串口发送出去 } } void TIM_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //使能TIM2时钟 TIM_TimeBaseStructure.TIM_Period = 999; //设置自动重装载寄存器值 TIM_TimeBaseStructure.TIM_Prescaler = 7199; //设置预分频值 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //时钟分频因子 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //初始化TIM2 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //使能TIM2更新中断 NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; //TIM2中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //子优先级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能中断通道 NVIC_Init(&NVIC_InitStructure); //初始化NVIC } void ADC_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; ADC_InitTypeDef ADC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1, ENABLE); //使能GPIOA和ADC1时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //PA0作为ADC输入引脚 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入模式 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //软件触发转换 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //右对齐数据 ADC_InitStructure.ADC_NbrOfChannel = 1; //转换通道数量 ADC_Init(ADC1, &ADC_InitStructure); //初始化ADC1 ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_239Cycles5); //配置ADC通道0 ADC_Cmd(ADC1, ENABLE); //使能ADC1 ADC_ResetCalibration(ADC1); //复位ADC1校准寄存器 while (ADC_GetResetCalibrationStatus(ADC1)); //等待复位完成 ADC_StartCalibration(ADC1); //开始ADC1校准 while (ADC_GetCalibrationStatus(ADC1)); //等待校准完成 } int main(void) { TIM_Configuration(); //配置TIM2 ADC_Configuration(); //配置ADC1 while (1) { } } ``` 以上代码中,首先定义了一个全局变量ADC_ConvertedValue,用来存放ADC转换结果。在TIM2的中断服务函数中,启动ADC转换,并等待转换完成后读取转换结果,然后进行一些处理操作,例如通过串口发送出去。TIM2的时钟频率为72MHz/7200=10kHz,定时周期为100ms。ADC1的采样时间为239.5个时钟周期,即每次转换时间为239.5/10e3=23.95us。在主函数中,只需要调用TIM_Configuration()和ADC_Configuration()函数进行初始化即可。 需要注意的是,ADC的输入引脚需要根据实际连接情况进行修改,例如上面的代码中使用PA0作为ADC输入引脚。另外,根据需要可以对TIM2的定时周期和ADC1的采样时间进行调整,以达到最佳效果。
阅读全文

相关推荐

最新推荐

recommend-type

果壳处理器研究小组(Topic基于RISCV64果核处理器的卷积神经网络加速器研究)详细文档+全部资料+优秀项目+源码.zip

【资源说明】 果壳处理器研究小组(Topic基于RISCV64果核处理器的卷积神经网络加速器研究)详细文档+全部资料+优秀项目+源码.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理
recommend-type

给定不超过6的正整数A,考虑从A开始的连续4个数字。请输出所有由它们组成的无重复数字的3位数。编写一个C语言程序

为了编写一个C语言程序来解决这个问题,我们需要遍历给定范围内的所有连续4个数字,并检查每个组合是否能构成一个无重复数字的三位数。这里是一个简单的示例程序: ```c #include <stdio.h> // 函数定义,用于生成并检查无重复数字的3位数 void generate_unique_3_digit(int A) { for (int i = A; i <= A + 3; i++) { int num = i * 100 + (i+1) * 10 + (i+2); if (num >= 100 && num < 1000 && is_uni
recommend-type

直流无刷电机控制技术项目源码集合

资源摘要信息:"直流无刷实例源码.zip" 该资源为一个包含多个技术项目源码的压缩文件,涵盖了IT技术的多个领域。接下来将详细介绍这些领域,并对其在源码中的应用进行说明。 1. 前端开发:前端开发通常指使用HTML、CSS和JavaScript等技术进行网页界面的构建。前端源码可能包括实现用户交互界面的代码,响应式布局实现,以及一些前端框架(如React或Vue.js)的使用实例。 2. 后端开发:后端通常涉及服务器端的编程,使用如PHP、Java、Python、C#等语言,处理HTTP请求、数据库交互、业务逻辑实现等。源码中可能包含服务器的搭建、数据库设计、API接口的实现等方面的内容。 3. 移动开发:移动开发关注于移动设备上的应用开发,涉及iOS、Android等平台,使用Swift、Kotlin、Java或跨平台框架如Flutter等。源码可能包括移动界面的布局、触摸事件处理、应用与后端数据的交互等。 4. 操作系统:操作系统源码可能包括对Linux内核的修改、或是基于RTOS(实时操作系统)的嵌入式系统开发。这类源码往往更偏向底层,涉及系统级编程。 5. 人工智能:人工智能项目源码可能包含机器学习、深度学习的实现,使用Python的TensorFlow或PyTorch框架等。这些源码可能涉及图像识别、自然语言处理等复杂算法的实现。 6. 物联网:物联网项目源码可能包含设备端与云平台的数据交互,使用的技术可能包括MQTT协议、HTTP/HTTPS协议等,可能还会涉及ESP8266这样的Wi-Fi模块使用。 7. 信息化管理:这类项目源码可能包含企业信息系统的构建,使用的技术可能包括数据库操作、数据报表生成、工作流管理等。 8. 数据库:数据库源码可能包括数据库的设计、操作,比如使用MySQL、PostgreSQL、MongoDB等数据库系统的SQL编写、存储过程、触发器等。 9. 硬件开发:硬件开发源码可能涉及使用STM32微控制器、EDA工具(如Proteus)进行电路设计、模拟和编程。 10. 大数据:大数据源码可能包含数据采集、存储、处理和分析的过程,可能会用到Hadoop、Spark、Flink等大数据处理框架。 11. 课程资源:这部分源码可能是为教学目的设计的,它可能包括一些基本项目的实现,适合初学者学习和理解。 12. 音视频:音视频源码可能包括音视频播放、录制、编解码等技术的应用,可能涉及到webRTC、FFmpeg等技术。 13. 网站开发:网站开发源码可能包括从简单的静态页面到复杂的动态网站实现,涉及前端框架、后端逻辑、数据库交互等。 14. EDA:电子设计自动化(EDA)源码可能包括电路图设计、PCB布线等,使用如Altium Designer、Eagle等专业EDA工具。 15. Proteus:Proteus源码可能包括电路的模拟和测试,它可以模拟微控制器和其他电子元件的行为。 该资源所包含的项目源码均已通过严格测试,可以直接运行。源码的适用人群广泛,不仅适合初学者学习不同技术领域,也适合进阶学习者或专业人士作为参考或直接拿来修改扩展,实现新功能。所有源码的上传都经过确认其正常工作,确保下载者可以直接使用。 在使用这些源码时,如果遇到任何问题,可以随时与博主沟通,博主将提供及时的解答。此外,鼓励用户下载和使用这些资源,互相学习、共同进步。 由于压缩文件的文件名称列表中只提供了"直流无刷实例源码",没有具体项目名称,因此我们无法得知具体的项目实例。然而,根据文件描述,我们可以确定这些源码项目覆盖了从硬件到软件、从传统应用到现代技术的广泛范围,并且针对了直流无刷电机的控制实例进行了特别的说明。 请注意,由于资源的宽泛涵盖性,这里提供的信息并不包含特定项目的详细分析,而是根据描述中的关键词进行了技术领域的概括性描述。如果需要针对具体项目进行分析,建议下载资源并根据具体文件内容进行详细探讨。