b=[[0]*(7) for i in range(7)] b[1][1]=1 for j in range(1,7): if b[1][j]!=0: print(b[1][j],end='') print() for i in range(2,7): for j in range(1,7): b[i][j]=b[i-1][j-1]+b[i-1][j] if b[i][j]!=0: print(b[i][j],end='') print()
时间: 2023-10-10 07:15:47 浏览: 63
这是一段 Python 代码,它的作用是生成一个帕斯卡三角形,并输出到控制台。帕斯卡三角形是一个数列,其第 i 行第 j 列的数等于第 i-1 行第 j-1 列和第 i-1 行第 j 列的数之和,第一行只有一个数 1,每行数字左右对称,形如下面的样子:
```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
...
```
可以看到,这段代码使用二维列表 b 来存储帕斯卡三角形,首先初始化 b 为一个 7 行 7 列的二维列表,每个元素都是 0。然后将第二行第二列设为 1,接着从第二行开始循环,每次循环都计算当前行的每个元素值,并输出到控制台。最后得到的就是一个完整的帕斯卡三角形。
相关问题
def mat_simp(A): n, p = A.shape for i in range(n): for j in range(p): A[i, j] = A[i, j].simplify().expand().simplify() return A def mat(u): n = len(u) M = sp.zeros(n, n) for j in range(n): cj = sp.Matrix([int(i == j) for i in range(n)]) Mcj = cj-2*cj.dot(u)/u.norm()**2*u for i in range(n): M[i, j] = Mcj[i] return M def DecompositionQR(A): n, p = A.shape if n != p or A.det() == 0: raise Exception("Les données ne sont pas correctes") AA = A.copy() O = sp.eye(n) for i in range(n): if not AA[i+1:, i].is_zero_matrix: B = AA.copy() for j in range(i): B[j, i] = 0 Ci = sp.Matrix([int(k == i) for k in range(n)]) S = mat_simp(mat(Ci-B[:, i]/B[:, i].norm())) O = S@O AA = S@AA return O.transpose(), AA给这段代码写上法语注释
def mat_simp(A):
# Simplifie la matrice A
n, p = A.shape
for i in range(n):
for j in range(p):
A[i, j] = A[i, j].simplify().expand().simplify()
return A
def mat(u):
# Calcule la matrice M correspondant à un vecteur u donné
n = len(u)
M = sp.zeros(n, n)
for j in range(n):
cj = sp.Matrix([int(i == j) for i in range(n)])
Mcj = cj-2*cj.dot(u)/u.norm()**2*u
for i in range(n):
M[i, j] = Mcj[i]
return M
def DecompositionQR(A):
# Décompose la matrice A en Q et R
n, p = A.shape
if n != p or A.det() == 0:
raise Exception("Les données ne sont pas correctes")
AA = A.copy()
O = sp.eye(n)
for i in range(n):
if not AA[i+1:, i].is_zero_matrix:
B = AA.copy()
for j in range(i):
B[j, i] = 0
Ci = sp.Matrix([int(k == i) for k in range(n)])
S = mat_simp(mat(Ci-B[:, i]/B[:, i].norm()))
O = S@O
AA = S@AA
return O.transpose(), AA
# Les commentaires sont ajoutés en français pour expliquer les fonctions et les variables.
import sympy as sp from sympy import Matrix def mat_simp(A): n, p = A.shape for i in range(n): for j in range(p): A[i, j] = sp.simplify(A[i, j]).expand().simplify() return A def mat(u): n = len(u) M = sp.zeros(n, n) for j in range(n): cj = sp.Matrix([int(i == j) for i in range(n)]) Mcj = cj-2*cj.dot(u)/u.norm()**2*u for i in range(n): M[i, j] = Mcj[i] return M def DecompositionQR(A): n, p = A.shape if n != p or A.det() == 0: raise Exception("Les données ne sont pas correctes") AA = A.copy() O = sp.eye(n) for i in range(n): if not AA[i+1:, i].is_zero: B = AA.copy() for j in range(i): B[j, i] = 0 Ci = sp.Matrix([int(k == i) for k in range(n)]) S = mat_simp(mat(Ci-B[:, i:i+1]/B[:, i:i+1].norm())) O = S@O AA = S@AA return O.transpose(), AA A = Matrix([2, 0, 2, 2, 1, 1, 2, 2, 0, 1, 1, 2, 0, 0, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).reshape(5, 5) DecompositionQR(A)为什么没有输出
在代码中,函数`DecompositionQR(A)`没有输出结果,因为它只是将矩阵A进行QR分解,并将正交矩阵O和上三角矩阵R返回。如果想要输出结果,需要在调用函数时打印返回值,例如:
```
A = Matrix([2, 0, 2, 2, 1, 1, 2, 2, 0, 1, 1, 2, 0, 0, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).reshape(5, 5)
O, R = DecompositionQR(A)
print("Orthogonal matrix O:")
print(O)
print("Upper triangular matrix R:")
print(R)
```
这样就可以输出QR分解结果了。
阅读全文