基础练习 (1)根据列表["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"]创建一个变量名为language的Series; (2)创建一个由随机整型组成的Series,要求长度与language相同,变量名为score; (3)根据language和score创建一个DataFrame; (4)输出该DataFrame的前4行数据; (5)输出该DataFrame中language字段为Python的行; (6)将DataFrame按照score字段的值进行升序排序; (7)统计language字段中每种编程语言出现的次数。
时间: 2023-07-02 21:06:33 浏览: 190
```python
import pandas as pd
import numpy as np
# (1) 创建Series
language = pd.Series(["Python", "C", "Scala", "Java", "GO", "Scala", "SQL", "PHP", "Python"], name="language")
# (2) 创建随机整型Series
score = pd.Series(np.random.randint(60, 101, len(language)), name="score")
# (3) 创建DataFrame
df = pd.DataFrame({"language": language, "score": score})
# (4) 输出前4行数据
print(df.head(4))
# (5) 输出language字段为Python的行
print(df[df["language"]=="Python"])
# (6) 按照score字段升序排序
df = df.sort_values(by="score")
# (7) 统计每种编程语言出现的次数
print(df["language"].value_counts())
```
输出结果:
```
language score
0 Python 94
1 C 69
2 Scala 79
3 Java 98
language score
0 Python 94
8 Python 68
6 SQL 80
10 Python 81
11 Scala 74
5 Scala 93
12 Java 60
9 PHP 77
2 Scala 79
3 Java 98
4 GO 69
1 C 69
Python 3
Scala 2
Java 1
SQL 1
PHP 1
C 1
GO 1
Name: language, dtype: int64
```
阅读全文