基于pytorch,帮我编写一个生成时序数据的GAN模型,噪声Z为正态分布的噪声,真实数据X为xlsx文件1里的271行96列的时序数据作为数据集,条件值C为xlsx文件里的1行96列的时序数据并转换为[1,96]的张量C.先训练判别器再训练生成器,训练判别器时,并将数据集里每个样本[1,96]张量和张量C纵向拼接为[2,96]张量XC且生成器生成的虚假样本X1张量[1,96]和张量C纵向拼接为[2,96]张量X1C,并将张量XC和张量X1C作为判别器的输入。训练生成器时,将噪声Z和条件C纵向拼接为[2,
时间: 2024-03-24 13:35:53 浏览: 123
96]的张量ZC,并将生成器生成的虚假样本X1张量[1,96]和条件C纵向拼接为[2,96]张量X1C,将张量ZC和张量X1C作为判别器的输入。以下是示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
from torch.utils.data import Dataset, DataLoader
# 定义数据集类
class TimeSeriesDataset(Dataset):
def __init__(self, data_file):
self.data = pd.read_excel(data_file).values
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = torch.tensor(self.data[idx], dtype=torch.float32)
c = torch.tensor(self.data[0], dtype=torch.float32) # 条件值
return x, c
# 定义判别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(194, 128),
nn.LeakyReLU(0.2),
nn.Linear(128, 64),
nn.LeakyReLU(0.2),
nn.Linear(64, 1),
nn.Sigmoid()
)
def forward(self, x, c):
xc = torch.cat([x, c], dim=1)
validity = self.model(xc)
return validity
# 定义生成器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(98, 128),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(128, 0.8),
nn.Linear(128, 256),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(256, 0.8),
nn.Linear(256, 96),
nn.Tanh()
)
def forward(self, z, c):
zc = torch.cat([z, c], dim=1)
x = self.model(zc)
return x
# 定义训练函数
def train(generator, discriminator, dataloader, optimizer_G, optimizer_D, device):
adversarial_loss = nn.BCELoss()
for epoch in range(num_epochs):
for i, (x, c) in enumerate(dataloader):
# 训练判别器
discriminator.zero_grad()
# 真实数据
x = x.to(device)
c = c.to(device)
valid = torch.ones(x.size(0), 1).to(device)
fake = torch.zeros(x.size(0), 1).to(device)
xc = torch.cat([x, c.repeat(x.size(0), 1)], dim=1)
validity_real = discriminator(xc)
loss_real = adversarial_loss(validity_real, valid)
# 生成虚假数据
z = torch.randn(x.size(0), 1).to(device)
zc = torch.cat([z, c.repeat(z.size(0), 1)], dim=1)
fake_samples = generator(z, c).detach()
xc_fake = torch.cat([fake_samples, c.repeat(fake_samples.size(0), 1)], dim=1)
validity_fake = discriminator(xc_fake)
loss_fake = adversarial_loss(validity_fake, fake)
# 计算总损失并反向传播
d_loss = (loss_real + loss_fake) / 2
d_loss.backward()
optimizer_D.step()
# 训练生成器
generator.zero_grad()
z = torch.randn(x.size(0), 1).to(device)
zc = torch.cat([z, c.repeat(z.size(0), 1)], dim=1)
fake_samples = generator(z, c)
xc_fake = torch.cat([fake_samples, c.repeat(fake_samples.size(0), 1)], dim=1)
validity = discriminator(xc_fake)
g_loss = adversarial_loss(validity, valid)
g_loss.backward()
optimizer_G.step()
# 输出训练信息
print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, num_epochs, i, len(dataloader), d_loss.item(), g_loss.item()))
# 定义超参数
data_file = "data.xlsx"
num_epochs = 200
batch_size = 64
lr = 0.0002
b1 = 0.5
b2 = 0.999
latent_dim = 1
# 准备数据
dataset = TimeSeriesDataset(data_file)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 初始化网络和优化器
generator = Generator().to(device)
discriminator = Discriminator().to(device)
optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2))
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))
# 训练模型
train(generator, discriminator, dataloader, optimizer_G, optimizer_D, device)
```
以上代码仅供参考,具体实现可能需要根据数据集的特点进行调整。
阅读全文