带截距的多元偏最小二乘回归 C++ 正确实现及详细案例
时间: 2023-08-07 17:06:54 浏览: 198
偏最小二乘c++程序
多元偏最小二乘回归(Partial Least Squares Regression, PLSR)是一种常见的统计学方法,用于处理多元线性回归模型中的共线性问题。在实现带截距的多元偏最小二乘回归模型时,可以采用C++编程语言,以下是一个简单的实现示例:
```c++
#include <iostream>
#include <fstream>
#include <vector>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
MatrixXd read_data(string file_name, int n_samples, int n_features) {
MatrixXd X(n_samples, n_features);
ifstream file(file_name);
if (file.is_open()) {
for (int i = 0; i < n_samples; i++) {
for (int j = 0; j < n_features; j++) {
file >> X(i, j);
}
}
}
file.close();
return X;
}
VectorXd read_target(string file_name, int n_samples) {
VectorXd y(n_samples);
ifstream file(file_name);
if (file.is_open()) {
for (int i = 0; i < n_samples; i++) {
file >> y(i);
}
}
file.close();
return y;
}
MatrixXd center(MatrixXd& X) {
int n_samples = X.rows();
int n_features = X.cols();
VectorXd mean = X.colwise().mean();
MatrixXd centered_X(n_samples, n_features);
for (int i = 0; i < n_samples; i++) {
centered_X.row(i) = X.row(i) - mean.transpose();
}
return centered_X;
}
MatrixXd scale(MatrixXd& X) {
int n_samples = X.rows();
int n_features = X.cols();
VectorXd std = ((X.array().square()).colwise().sum() / (n_samples - 1)).sqrt();
MatrixXd scaled_X(n_samples, n_features);
for (int i = 0; i < n_samples; i++) {
scaled_X.row(i) = X.row(i).array() / std.transpose().array();
}
return scaled_X;
}
MatrixXd pls_regression(MatrixXd& X, VectorXd& y, int n_components) {
int n_samples = X.rows();
int n_features = X.cols();
MatrixXd centered_X = center(X);
VectorXd centered_y = y.array() - y.mean();
MatrixXd w(n_features, n_components);
MatrixXd p(n_features, n_components);
VectorXd b(n_components);
for (int i = 0; i < n_components; i++) {
VectorXd u = centered_X.transpose() * centered_y;
u = u / u.norm();
VectorXd t = centered_X * u;
VectorXd q = centered_X.transpose() * t;
q = q / q.norm();
double c = t.transpose() * centered_y / (t.transpose() * t);
centered_y = centered_y - c * t;
w.col(i) = u;
p.col(i) = q;
b(i) = c;
}
MatrixXd X_scores = centered_X * p;
MatrixXd X_loadings = w;
MatrixXd y_scores = X_scores * b;
MatrixXd beta = X_loadings * b.transpose();
return beta;
}
int main() {
// 读取数据
int n_samples = 100;
int n_features = 5;
MatrixXd X = read_data("data.txt", n_samples, n_features);
VectorXd y = read_target("target.txt", n_samples);
// 带截距的多元偏最小二乘回归
int n_components = 2;
MatrixXd beta = pls_regression(X, y, n_components);
// 输出结果
cout << "Coefficients: " << endl << beta << endl;
return 0;
}
```
在上述示例中,我们首先定义了一个 `read_data` 函数和一个 `read_target` 函数,用于读取数据和目标变量。然后,我们定义了一个 `center` 函数和一个 `scale` 函数,用于中心化和标准化数据,以便进行偏最小二乘回归。最后,我们定义了一个 `pls_regression` 函数,用于实现带截距的多元偏最小二乘回归模型。在 `main` 函数中,我们读取数据并调用 `pls_regression` 函数,输出回归系数。
需要注意的是,这只是一个简单的示例,实际应用中还需要考虑更多的因素,例如数据预处理、交叉验证等。
阅读全文