if blobs: # max_blob不一定是赛道,但是如果如果硬件动作组不偏离中线,应可以直接这么写。 # 应设计多个不同条件下的转弯和移动动作组,使用手掰编程或者改变原有动作的转角即可。 max_blob = find_max(blobs) img.draw_cross(max_blob.cx(), max_blob.cy(),(0,0,0)) img.draw_rectangle(max_blob.rect()) #print(max_blob.cx(), max_blob.cy(), max_blob.rect()[2], max_blob.rect()[3], max_blob.pixels()) #print(max_blob.density(), max_blob.w(), max_blob.h()) blob_white_height_prob = 0.4 # TODO 可调 height_prob = max_blob.h()/ROI_height print('height_prob: '+ str(height_prob) + ' ' + 'density:' + str(max_blob.density())) if flag == 1 and sent_count <= 3: if max_blob.cx()<ROI_height: # TODO 重点改的对象。使用height_prob, max_blob.density(), max_blob.cx()进行赛道的识别 uart.write('8''\r\n') # print('turn left!') led.on() sent_count = sent_count + 1 elif action_cx >=130 : uart.write('3''\r\n') # print('turn right!' led.on() sent_count = sent_count + 1 continue你帮我在代码里修改判断机器狗左转的条件,给我一个更好的代码

时间: 2023-06-24 09:09:09 浏览: 119
好的,我可以帮你修改一下。根据你的代码,我理解你想要在机器狗检测到赛道时,判断其偏向左侧,然后控制机器狗向左转。你可以尝试修改以下代码: ``` if flag == 1 and sent_count <= 3: if max_blob.cx() < ROI_height and max_blob.cx() < 100: # 如果最大的blob的中心点坐标小于ROI_height且小于100 uart.write('8''\r\n') # 向左转 led.on() sent_count = sent_count + 1 elif action_cx >=130 : uart.write('3''\r\n') # 向右转 led.on() sent_count = sent_count + 1 ``` 上面的代码中,我添加了一个新的判断条件 `max_blob.cx() < 100`,表示当最大的blob的中心点坐标小于100时,机器狗会向左转。你可以根据实际情况调整这个值。 同时,我也发现你在 `uart.write()` 函数中的参数没有用引号包裹起来,我在代码中已经修改了,你可以参考。
相关问题

def find_max(blobs): max_size=0 for blob in blobs: if blob[2]*blob[3] > max_size: max_blob=blob max_size = blob[2]*blob[3] return max_blob

这个函数的作用是在给定的一组 blobs 中,找到面积最大的 blob,并返回它的信息。 它使用了一个变量 `max_size` 来记录当前最大的面积,并通过遍历 blobs 列表来更新它。对于每个 blob,它会计算出面积(blob[2]*blob[3])并与当前最大面积比较。如果当前 blob 的面积更大,则更新 `max_blob` 和 `max_size`。 最后,函数返回 `max_blob`,即面积最大的 blob 的信息。 请注意,你提供的代码中没有定义 `max_blob` 变量,你可能需要在函数开始时添加 `max_blob = None` 来避免错误。

import sensor, image, time from pyb import UART import json yellow_threshold = (79, 100, -7, 6, 4, 41) sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QQVGA) sensor.skip_frames(10) sensor.set_auto_whitebal(False) clock = time.clock() uart = UART(3, 115200) def find_max(blobs): max_size=0 for blob in blobs: if blob.pixels() > max_size: max_blob=blob max_size = blob.pixels() return max_blob while(True): img = sensor.snapshot() blobs = img.find_blobs([yellow_threshold]) if blobs: max_blob=find_max(blobs) print('sum :', len(blobs)) img.draw_rectangle(max_blob.rect()) img.draw_cross(max_blob.cx(), max_blob.cy()) output_str="[%d,%d]" % (max_blob.cx(),max_blob.cy()) print('you send:',output_str) uart.write(output_str+'\r\n') else: print('not found!')

这段代码是一个基于OpenMV摄像头的颜色识别程序。程序的功能是识别图像中的黄色物体并通过UART串口发送物体的中心坐标。 该程序的主要逻辑如下: 1. 导入所需的库和模块。 2. 设置黄色物体的颜色阈值。 3. 初始化摄像头和UART串口。 4. 定义一个函数`find_max`,用于在识别到的黄色物体中找到最大的物体。 5. 进入循环,不断获取摄像头图像。 6. 在图像中寻找黄色物体的区域(使用`find_blobs`函数)。 7. 如果找到了物体,找到最大的物体并打印其中心坐标。 8. 将中心坐标通过UART串口发送出去。 9. 如果没有找到物体,则打印"not found!"。 请注意,此代码需要运行在支持OpenMV的硬件上,并且还需要根据实际情况进行适当的调整和配置。
阅读全文

相关推荐

import sensor, image, time,math,pyb from pyb import UART,LED import json import ustruct sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking red_threshold_01=(10, 100, 127, 32, -43, 67) clock = time.clock() uart = UART(3,115200) #定义串口3变量 uart.init(115200, bits=8, parity=None, stop=1) # init with given parameters def find_max(blobs): #定义寻找色块面积最大的函数 max_size=0 for blob in blobs: if blob.pixels() > max_size: max_blob=blob max_size = blob.pixels() return max_blob def sending_data(cx,cy,cw,ch): global uart; #frame=[0x2C,18,cx%0xff,int(cx/0xff),cy%0xff,int(cy/0xff),0x5B]; #data = bytearray(frame) data = ustruct.pack("<bbhhhhb", #格式为俩个字符俩个短整型(2字节) 0x2C, #帧头1 0x12, #帧头2 int(cx), # up sample by 4 #数据1 int(cy), # up sample by 4 #数据2 int(cw), # up sample by 4 #数据1 int(ch), # up sample by 4 #数据2 0x5B) uart.write(data); #必须要传入一个字节数组 while(True): clock.tick() img = sensor.snapshot() blobs = img.find_blobs([red_threshold_01]) cx=0;cy=0; if blobs: max_b = find_max(blobs) #如果找到了目标颜色 cx=max_b[5] cy=max_b[6] cw=max_b[2] ch=max_b[3] img.draw_rectangle(max_b[0:4]) # rect img.draw_cross(max_b[5], max_b[6]) # cx, cy FH = bytearray([0x2C,0x12,cx,cy,cw,ch,0x5B]) #sending_data(cx,cy,cw,ch) uart.write(FH)

def state_deflection_angle(roi_blobs_result): ''' 说明:偏转状态值返回 ''' # ROI区域权重值 #ROIS_WEIGHT = [1, 1, 1, 1] ROIS_WEIGHT = [1, 0, 0, 1] state_crossing = False deflection_angle = 0 down_center = 0 center_num = 0 # 偏转值计算,ROI中心区域X值 centroid_sum = roi_blobs_result['up']['cx']*ROIS_WEIGHT[0] + roi_blobs_result['middle_up']['cx']*ROIS_WEIGHT[1] \ + roi_blobs_result['middle_down']['cx']*ROIS_WEIGHT[2] + roi_blobs_result['down']['cx']*ROIS_WEIGHT[3] if roi_blobs_result['up']['blob_flag']: center_num += ROIS_WEIGHT[0] if roi_blobs_result['middle_up']['blob_flag']: center_num += ROIS_WEIGHT[1] if roi_blobs_result['middle_down']['blob_flag']: center_num += ROIS_WEIGHT[2] if roi_blobs_result['down']['blob_flag']: center_num += ROIS_WEIGHT[3] center_pos = centroid_sum / (ROIS_WEIGHT[0]+ROIS_WEIGHT[1]+ROIS_WEIGHT[2]+ROIS_WEIGHT[3]) deflection_angle = (IMG_WIDTH/2)- center_pos # 判断两侧ROI区域检测到黑色线 if roi_blobs_result['left']['blob_flag'] and roi_blobs_result['right']['blob_flag']: # 判断两侧ROI区域检测到黑色线处于图像下方1/3处 if roi_blobs_result['left']['cy'] <= ((IMG_HEIGHT/3)) and roi_blobs_result['right']['cy'] <= ((IMG_HEIGHT/3)): # 当最下方ROI区域的黑线宽度大于140像素(检测到路口) if roi_blobs_result['down']['w'] > 235: state_crossing = True #elif roi_blobs_result['up']['blob_flag']: #state_crossing = True return down_center, state_crossing, deflection_angle 详细剖析里面的值都是怎么计算的

# Single Color Code Tracking Example # # This example shows off single color code tracking using the CanMV Cam. # # A color code is a blob composed of two or more colors. The example below will # only track colored objects which have both the colors below in them. import sensor, image, time, math # Color Tracking Thresholds (L Min, L Max, A Min, A Max, B Min, B Max) # The below thresholds track in general red/green things. You may wish to tune them... thresholds = [(30, 100, 15, 127, 15, 127), # generic_red_thresholds -> index is 0 so code == (1 << 0) (30, 100, -64, -8, -32, 32)] # generic_green_thresholds -> index is 1 so code == (1 << 1) # Codes are or'ed together when "merge=True" for "find_blobs". sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking clock = time.clock() # Only blobs that with more pixels than "pixel_threshold" and more area than "area_threshold" are # returned by "find_blobs" below. Change "pixels_threshold" and "area_threshold" if you change the # camera resolution. "merge=True" must be set to merge overlapping color blobs for color codes. while(True): clock.tick() img = sensor.snapshot() for blob in img.find_blobs(thresholds, pixels_threshold=100, area_threshold=100, merge=True): if blob.code() == 3: # r/g code == (1 << 1) | (1 << 0) # These values depend on the blob not being circular - otherwise they will be shaky. # if blob.elongation() > 0.5: # img.draw_edges(blob.min_corners(), color=(255,0,0)) # img.draw_line(blob.major_axis_line(), color=(0,255,0)) # img.draw_line(blob.minor_axis_line(), color=(0,0,255)) # These values are stable all the time. img.draw_rectangle(blob.rect()) img.draw_cross(blob.cx(), blob.cy()) # Note - the blob rotation is unique to 0-180 only. img.draw_keypoints([(blob.cx(), blob.cy(), int(math.degrees(blob.rotation())))], size=20) print(clock.fps())

[ERROR:0@1.536] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp (1203) cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively OPENCV/DNN: [Pooling]:(onnx_node!AveragePool_75): getMemoryShapes() post validation failed. inputs=1 outputs=1/1 blobs=0 inplace=0 [ERROR:0@1.536] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp (1206) cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively input[0] = [ 1 128 7 7 ] [ERROR:0@1.536] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp (1210) cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively output[0] = [ 1 128 -2147483648 -2147483648 ] [ERROR:0@1.536] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp (1216) cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively Exception message: OpenCV(4.6.0) D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp:1195: error: (-2:Unspecified error) in function 'void __cdecl cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively(int,class std::map<int,struct cv::dnn::dnn4_v20220524::detail::LayerShapes,struct std::less<int>,class std::allocator<struct std::pair<int const ,struct cv::dnn::dnn4_v20220524::detail::LayerShapes> > > &)' > (expected: 'total(os[i]) > 0'), where > 'total(os[i])' is 0 > must be greater than > '0' is 0 Traceback (most recent call last): File "C:\Users\20496\Desktop\00\1.py", line 23, in <module> output = net.forward() # 网络的计算,返回网络的输出 cv2.error: OpenCV(4.6.0) D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp:1195: error: (-2:Unspecified error) in function 'void __cdecl cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively(int,class std::map<int,struct cv::dnn::dnn4_v20220524::detail::LayerShapes,struct std::less<int>,class std::allocator<struct std::pair<int const ,struct cv::dnn::dnn4_v20220524::detail::LayerShapes> > > &)' > (expected: 'total(os[i]) > 0'), where > 'total(os[i])' is 0 > must be greater than > '0' is 0

最新推荐

recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

com.harmonyos.exception.DiskReadWriteException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【自然语言处理】:R语言文本挖掘与情感分析入门指南

![【自然语言处理】:R语言文本挖掘与情感分析入门指南](https://wisdomml.in/wp-content/uploads/2022/08/tokenizer-1024x512.jpg) # 1. 自然语言处理和R语言基础 自然语言处理(NLP)是计算机科学和人工智能领域的一个分支,旨在让计算机能够理解人类语言。随着大数据时代的到来,NLP在文本分析、信息检索、语音识别等方面的应用变得越来越广泛。R语言作为一种开源的统计编程语言,具有强大的数据处理和可视化功能,它在NLP领域的应用也越来越受到重视。本章将带领读者了解自然语言处理的基础知识,以及R语言在处理语言数据时的基本语法和功
recommend-type

智能衣柜的设计中是如何应用嵌入式系统与物联网技术实现个性化定制的?

智能衣柜作为家居智能化的重要分支,其设计理念的核心在于利用先进的嵌入式系统和物联网技术来优化用户体验。嵌入式系统作为智能衣柜的“大脑”,承担着数据处理、存储和决策的角色。通过在衣柜中集成传感器、微控制器和通信模块,嵌入式系统能够实现对衣物存储环境的实时监控,并根据衣物类型、使用频率等因素智能分配存储空间。 参考资源链接:[智能衣柜:现状、发展趋势与未来创新](https://wenku.csdn.net/doc/uty55wcr9r?spm=1055.2569.3001.10343) 物联网技术的应用,则使智能衣柜能够通过网络连接到用户的智能设备,如智能手机或平板电脑,实现远程监控和管理。