高通pdn有效阻抗计算公式

时间: 2023-07-24 17:01:57 浏览: 144
### 回答1: 高通PDN(Power Distribution Network)有效阻抗计算公式主要涉及两个方面——电源的输出阻抗以及PCB(Printed Circuit Board)上的各种元件和线路的电阻、电感、电容等。 首先,计算电源的输出阻抗。当电源向高频电路提供电流时,会产生电源波形,其中包含了电源的输出阻抗信息。计算电源输出阻抗的常用方法是:首先通过负载电流和负载电压进行测量,得到直流(DC)输出阻抗。然后,将此输出阻抗转换为交流(AC)输出阻抗,即PDN有效阻抗。具体计算公式如下: PDN有效阻抗 = DC输出阻抗 / (1 + jωRC) 其中,j代表虚数单位,ω为频率,R为电源输出电阻,C为电源输出电容。 其次,计算PCB上的各种元件和线路的电阻、电感、电容等对PDN有效阻抗的影响。这些元件和线路由于材料和几何结构等因素,会产生电阻、电感和电容,进而影响PDN的阻抗。对于扁平电源线路和电源陶瓷电解电容,其电感和电容也需要考虑在内。此时,可以通过SPICE仿真软件等工具进行计算和模拟,根据具体的电阻、电感和电容值进行计算。 总结起来,高通PDN有效阻抗计算公式涵盖了电源输出阻抗和PCB上各种元件和线路的电阻、电感、电容等因素。通过对这些因素的计算和模拟,可以得到准确的PDN有效阻抗值,从而保证高频电路的正常运行。 ### 回答2: 高通PDN(功率分配网络)的有效阻抗计算公式如下: 1. 首先确定PDN系统的总电感(L_total)和总电容(C_total),这是通过对PDN进行建模和分析得出的。通常,L_total和C_total是由高频噪声滤波器和直流母线电感以及电容组成的。 2. 然后,计算PDN的谐振频率(f_res):f_res = 1 / (2π√(L_total * C_total)) 3. 接下来,计算PDN的代表性长度(L_eff):L_eff = √(L_total / C_total) 4. 最后,根据PDN的长度和谐振频率,可以计算出PDN的有效阻抗(Z_eff):Z_eff = √(L_total / C_total) / (2πf_res) 需要注意的是,以上公式只是近似计算PDN的有效阻抗,实际情况可能还涉及到其他因素。因此,在实际设计中,还需要进行更详细的电路分析和仿真,确保PDN的有效阻抗满足系统所需的要求。 ### 回答3: 高通PDN的有效阻抗计算是一种用于电源分布网络设计的方法,旨在确保电源供应的稳定性和噪声抑制。具体计算公式如下: 有效阻抗 = (Vp/Vn) * (1 + sqrt(Cdc/Cdd)) 其中, Vp是PDN上的功率传递电压; Vn是PDN上的噪声传递电压; Cdc是从负载到地的电容; Cdd是从负载到负载的电容。 通过此公式计算得出的有效阻抗值,可以用来评估PDN的功率传输和噪声传输的质量。较小的有效阻抗值表明更好的功率传递和噪声抑制性能。 除了此基本公式,高通PDN有效阻抗的计算还与其他因素相关,如电源电压的纹波、线路的电感、电容等。因此,在实际应用中,可能还需要考虑这些因素进行综合计算,以获得更准确的PDN有效阻抗值。 总之,高通PDN有效阻抗计算公式是一种衡量电源分布网络性能的方法,通过考虑功率传递电压、噪声传递电压以及相关电容的影响,得出一个评估PDN性能的指标。

相关推荐

void S1mmeSession::CuOutputNode(S1APNode* p_node, uint8_t worker_id,bool timeout) { bool output_ue_release = true, out_put_pdn_connect = true; time_t last_kqi_sec = 0; for (std::vector<CuKqiInfo_T>::iterator it = p_node->cu_kqi_.begin(); it != p_node->cu_kqi_.end();) { CuOutputKqi(p_node, it->msg_type, it->ebi, last_kqi_sec, output_ue_release,worker_id); it = p_node->cu_kqi_.erase(it); } S1MMEKQI* kqi_main = p_node->FindKqi(kS1mmeProcTypeERABModification); if(kqi_main){ CuEncodeErabModification(kqi_main, p_node->GetCommonInfo(), p_node->GetUserInfo(), current_time_.tv_sec,worker_id); } kqi_main = p_node->FindKqi(kS1mmeProcTypeSecondaryRatDataUsage); if(kqi_main){ CuEncodeSecondaryRatDataUsageReport(kqi_main, p_node->GetCommonInfo(), p_node->GetUserInfo(), current_time_.tv_sec,worker_id); } kqi_main = p_node->FindKqi(kS1mmeProcTypeAttach); if (kqi_main && ((timeout && nas_default_encrypt_alg_) || (!timeout))) { S1MMEKQI* kqi_ue_release = p_node->FindKqi(kS1mmeProcTypeUEContextRelease); S1MMEKQI* kqi_pdn_connect = p_node->FindKqi(kS1mmeProcTypePdnConnect, 5); if (1) { for (uint8_t i=0; i<1; i++) { //KQIBearer* p_bearer = kqi_initial_context->GetBearer(i); //if (p_bearer == NULL) break; //p_node->GetUserInfo()->FillKQIBearer(p_bearer->ebi, p_bearer); } } CuEncodeAttach(kqi_main, p_node->GetCommonInfo(), p_node->GetUserInfo(), current_time_.tv_sec,worker_id,kqi_ue_release,kqi_pdn_connect); //output attach if (output_ue_release && kqi_ue_release && kqi_ue_release->complete_time_.tv_sec - kqi_main->complete_time_.tv_sec > 15) { //output UEContextRelease; CuEncodeUEContextRelease(kqi_ue_release,p_node->GetCommonInfo(),p_node->GetUserInfo(),current_time_.tv_sec,worker_id); output_ue_release = false; } out_put_pdn_connect = false; }什么意思

REGISTER ADDRESS REGISTER DATA(1) HEX 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 LVDS_ RATE_2X 0 0 0 0 0 0 0 0 0 0 0 0 0 GLOBAL_ PDN 2 PAT_MODES_FCLK[2:0] LOW_ LATENCY_E N AVG_EN SEL_PRBS_ PAT_ FCLK PAT_MODES SEL_PRBS_ PAT_GBL OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0] 3 SER_DATA_RATE DIG_GAIN_ EN 0 OFFSET_CORR_DELAY _FROM_TX_TRIG[7:6] DIG_ OFFSET_ EN 0 0 0 1 0 0 0 0 4 OFFSET_ REMOVA L_SELF OFFSET_ REMOVAL_ START_ SEL OFFEST_ REMOVAL_ START_ MANUAL AUTO_OFFSET_REMOVAL_ACC_CYCLES[3:0] PAT_ SELECT_ IND PRBS_ SYNC PRBS_ MODE PRBS_EN MSB_ FIRST DATA_ FORMAT 0 ADC_RES 5 CUSTOM_PATTERN 7 AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL 0 0 0 0 0 0 0 0 0 0 CHOPPER_EN 8 0 0 AUTO_OFFSET_REMOVAL_VAL_RD B 0 0 0 0 EN_ DITHER 0 0 0 0 0 0 0 0 0 0 0 D GAIN_ADC1o 0 OFFSET_ADC1o E GAIN_ADC1e 0 OFFSET_ADC1e F GAIN_ADC2o 0 OFFSET_ADC2o 10 GAIN_ADC2e 0 OFFSET_ADC2e 11 GAIN_ADC3o 0 OFFSET_ADC3o 12 GAIN_ADC3e 0 OFFSET_ADC3e 13 GAIN_ADC4o 0 OFFSET_ADC4o 14 GAIN_ADC4e 0 OFFSET_ADC4e 15 PAT_PRB S_LVDS1 PAT_PRBS_ LVDS2 PAT_PRBS_ LVDS3 PAT_PRBS_ LVDS4 PAT_LVDS1 PAT_LVDS2 HPF_ ROUND_ EN_ADC1-8 HPF_CORNER_ADC1-4 DIG_HPF_ EN_ADC1-4 17 0 0 0 0 0 0 0 0 PAT_LVDS3 PAT_LVDS4 0 0 18 0 0 0 0 PDN_ LVDS4 PDN_ LVDS3 PDN_ LVDS2 PDN_ LVDS1 0 0 0 0 INVERT_ LVDS4 INVERT_ LVDS3 INVERT_ LVDS2 INVERT_ LVDS1 19 GAIN_ADC5o 0 OFFSET_ADC5o 1A GAIN_ADC5e 0 OFFSET_ADC5e 1B GAIN_ADC6o 0 OFFSET_ADC6o 1C GAIN_ADC6e 0 OFFSET_ADC6e 1D GAIN_ADC7o 0 OFFSET_ADC7o 1E GAIN_ADC7e 0 OFFSET_ADC7e 1F GAIN_ADC8o 0 OFFSET_ADC8o 20 GAIN_ADC8e 0 OFFSET_ADC8e 21 PAT_PRB S_LVDS5 PAT_PRBS_ LVDS6 PAT_PRBS_ LVDS7 PAT_PRBS_ LVDS8 PAT_LVDS5 PAT_LVDS6 0 HPF_CORNER_ADC5-8 DIG_HPF_ EN_ADC5-8 23 0 0 0 0 0 0 0 0 PAT_LVDS7 PAT_LVDS8 0 0

最新推荐

recommend-type

高速设计中的信号完整性和电源完整性分析

信号完整性和电源完整性的分析对于成功的高速数字...此外,随着建模方法和计算能力的改善,如果能够同时仿真这两种类型的完整性,则会清楚地了解电路的实际行为、设计中真正存在的利润以及它们如何实现最佳可能性能。
recommend-type

NR5G网络拒绝码cause = 51 (0x33) (PDU session type IPv6 only allowed)

NR5G网络拒绝码cause = 51 (0x33) (PDU session type IPv6 only allowed)
recommend-type

SIwave电源完整性仿真教程

SIWAVE 入门基本教程 从PCB文件导入 每步操作与设置 关于S参数 谐振分析 眼图分析 TDR等有较为详细的讲解与描述 图示较多 很实用
recommend-type

LTEppt\LTE空口信令流程详解

举例: Attach附着信令流程 (统计时延:红色的为开始和结束信令) EPS MM Attach request EPS MM Unknown(0x0734) UL CCCH rrcConnectionRequest DL CCCH rrcConnectionSetup UL DCCH rrcConnectionSetupComplete ...
recommend-type

基于关键词搜索结果的微博爬虫(下载即用).zip

基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。