#获得重要特征 selector.get_support()函数
时间: 2024-05-09 18:16:45 浏览: 247
selector.get_support()函数是用于获取特征选择器中被选中的重要特征的方法。它返回一个布尔类型的数组,其中True表示该特征被选中,False表示该特征未被选中。
下面是一个示例:
```python
from sklearn.feature_selection import SelectKBest, f_classif
# 创建特征选择器对象
selector = SelectKBest(score_func=f_classif, k=5)
# 训练特征选择器并获取重要特征
X_new = selector.fit_transform(X, y)
important_features = X.columns[selector.get_support()]
```
在上面的示例中,我们使用了SelectKBest类和f_classif函数来创建一个特征选择器对象。然后,我们使用fit_transform()方法训练选择器并获取新的数据集X_new。最后,我们使用get_support()方法获取被选中的重要特征,并将它们存储在important_features变量中。
相关问题
bound method SelectorMixin.get_support of VarianceThreshold(threshold=0.5)
这不是一个问题,而是一个函数调用的结果。根据代码上下文,我猜测你正在使用 scikit-learn 中的 VarianceThreshold 类,并且想要调用 SelectorMixin 类中的 get_support() 方法来获取支持的特征索引。你可以将 VarianceThreshold 类的实例作为参数传递给 get_support() 方法,例如:
```
from sklearn.feature_selection import VarianceThreshold, SelectorMixin
selector = VarianceThreshold(threshold=0.5)
support = SelectorMixin.get_support(selector)
print(support)
```
这将打印出一个布尔数组,表示每个特征是否被支持。注意,你需要在代码中导入 VarianceThreshold 和 SelectorMixin 类。
import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示
抱歉,由于我是一个纯文本AI,无法进行画图展示。但是,你可以使用Python中的matplotlib库进行数据可视化。例如,你可以使用以下代码绘制特征重要性条形图:
import matplotlib.pyplot as plt
importance = mode.feature_importances_
features = list(X.columns)
plt.barh(features, importance)
plt.title('Feature Importance')
plt.xlabel('Importance')
plt.show()
这段代码可以在Sf函数中的print(importance)下方添加,并在运行时展示特征重要性条形图。
阅读全文