blur = cv2.GaussianBlur(img, (5, 5), )解释一下
时间: 2023-05-20 19:06:13 浏览: 160
这是一个使用OpenCV库中的GaussianBlur函数对图像进行高斯模糊处理的代码。其中,img是需要进行模糊处理的图像,(5, 5)是高斯核的大小,可以根据需要进行调整。在代码中缺少高斯核的标准差参数,需要根据具体情况进行设置。
相关问题
def xt(): # result = cv2.blur(img, (5, 5)) # result = cv2.GaussianBlur(result, (3, 3), 0, 0) result = cv2.bilateralFilter(img, a, b, c) cv2image = cv2.cvtColor(result, cv2.COLOR_BGR2RGBA) # 转换颜色从BGR到RGBA image = Image.fromarray(cv2image) # 将图像转换成Image对象 img2 = ImageTk.PhotoImage(image.resize((450, 450))) # 把图片缩放以下,不然太大了,放不下 l2.config(image=img2) l2.image = img2
这是一个Python函数,其中包含了一些图像处理的代码。具体来说,这个函数接受一个名为img的图像作为输入,并对其进行模糊、高斯滤波或双边滤波等处理,最终将处理后的图像显示在一个名为l2的Tkinter标签上。其中,a、b和c是双边滤波函数的参数,用来调整滤波的效果。这个函数的作用是对图像进行处理,使其更加平滑、清晰或者有特殊的效果。如果你想使用这个函数,需要先导入cv2和PIL库。
import cv2 # 读取两幅待处理的图像 img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE) # 对图像进行高斯模糊 img1 = cv2.GaussianBlur(img1, (5, 5), 0) img2 = cv2.GaussianBlur(img2, (5, 5), 0) # 使用Shi-Tomasi算法检测特征点 corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10) corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10) # 对特征点进行亚像素定位 corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) # 对特征点进行匹配 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) kps1, descs1 = sift.detectAndCompute(img1, None) kps2, descs2 = sift.detectAndCompute(img2, None) matches = matcher.match(descs1, descs2) # 使用RANSAC算法进行匹配点筛选 src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 对图像进行配准和拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 显示结果 cv2.imshow('Result', result) cv2.waitKey() cv2.destroyAllWindows()改进这段代码使其输出特征点连线图和拼接图
import cv2
import numpy as np
# 读取两幅待处理的图像
img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)
# 对图像进行高斯模糊
img1 = cv2.GaussianBlur(img1, (5, 5), 0)
img2 = cv2.GaussianBlur(img2, (5, 5), 0)
# 使用Shi-Tomasi算法检测特征点
corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10)
corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10)
# 对特征点进行亚像素定位
corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
# 对特征点进行匹配
sift = cv2.xfeatures2d.SIFT_create()
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
kps1, descs1 = sift.detectAndCompute(img1, None)
kps2, descs2 = sift.detectAndCompute(img2, None)
matches = matcher.match(descs1, descs2)
# 使用RANSAC算法进行匹配点筛选
src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 画出特征点连线图
matchesMask = mask.ravel().tolist()
h, w = img1.shape
draw_params = dict(matchColor=(0, 255, 0), singlePointColor=None, matchesMask=matchesMask, flags=2)
img3 = cv2.drawMatches(img1, kps1, img2, kps2, matches, None, **draw_params)
cv2.imshow('Feature Matching', img3)
# 对图像进行配准和拼接
result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
result[0:img2.shape[0], 0:img2.shape[1]] = img2
# 显示结果
cv2.imshow('Result', result)
cv2.waitKey()
cv2.destroyAllWindows()
阅读全文