def img_cut_roi_resize_to_target_black(img_txt_path,result_path): img_total = [] txt_total = [] file = os.listdir(img_txt_path) for filename in file: first, last = os.path.splitext(filename) if last == ".bmp": # 图片的后缀名 img_total.append(first) # print(img_total) else: txt_total.append(first) for img_ in img_total: if img_ in txt_total: filename_img = img_ + ".bmp" # 图片的后缀名 # print('filename_img:', filename_img) path1 = os.path.join(img_txt_path, filename_img) img = cv2.imread(path1) h, w = img.shape[0], img.shape[1] # 直接读取原图的长宽不会失真 img = cv2.resize(img, (w, h), interpolation=cv2.INTER_CUBIC) # resize 图像大小,否则roi区域可能会报错 # plt.imshow('resized_img',img) # 会报错,之后再次查看resize后的图片(已解决) # plt.show() filename_txt = img_ + ".txt" # print('filename_txt:', filename_txt) n = 1 with open(os.path.join(img_txt_path, filename_txt), "r+", encoding="utf-8", errors="ignore") as f: for line in f: aa = line.split(" ") x_center = w * float(aa[1]) # aa[1]左上点的x坐标 y_center = h * float(aa[2]) # aa[2]左上点的y坐标 width = int(w * float(aa[3])) # aa[3]图片width height = int(h * float(aa[4])) # aa[4]图片height lefttopx = int(x_center - width / 2.0) lefttopy = int(y_center - height / 2.0) # roi = img[lefttopy+1:lefttopy+height+3,lefttopx+1:lefttopx+width+1] # [左上y:右下y,左上x:右下x] (y1:y2,x1:x2)需要调参,否则裁剪出来的小图可能不太好 roi = img[lefttopy:lefttopy + height, lefttopx:lefttopx + width] # 目前没有看出差距 roi = img_resize_to_target_black(roi) # roi = cv2.copyMakeBorder(roi, 50, 50, 50, 50, cv2.BORDER_CONSTANT, value=[255, 255, 255]) # 是将原图长宽各个
时间: 2023-12-11 18:04:50 浏览: 63
方向上添加50个像素的白边,但是这里注释掉了,可能是因为不需要这个步骤了。接下来,将裁剪好并调整大小的图片保存到指定路径中:
```python
# 保存裁剪好的图片到指定路径
cv2.imwrite(os.path.join(result_path, img_ + "_" + str(n) + ".bmp"), roi)
n += 1
```
最后,该函数返回一个空值。
相关问题
优化这段代码import os import cv2 import numpy as np def MediumFilter(img_path='D:\pythonProject2\111.jpg'): img_src=cv2.imread(img_path) img=cv2.resize(src=img_src, dsize=(450, 450)) img=cv2.medianBlur(img, ksize=5) cv2.imshow('img', img) cv2.imshow('img_src', img_src) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': print('Pycharm') MediumFilter()
这段代码可以进行如下优化:
1. 将图片路径作为参数传入函数中,而不是在函数内部指定。这样可以使代码更加灵活,适用于不同的图片路径。
2. 将图片大小的调整和中值滤波分开进行,这样可以更好地控制每个操作的效果。
3. 添加异常处理,以防止程序因为无法打开图片而崩溃。
重构后的代码如下:
```
import os
import cv2
import numpy as np
def medium_filter(img_path):
try:
img_src = cv2.imread(img_path)
img_resized = cv2.resize(src=img_src, dsize=(450, 450))
img_filtered = cv2.medianBlur(img_resized, ksize=5)
cv2.imshow('img_filtered', img_filtered)
cv2.imshow('img_src', img_src)
cv2.waitKey(0)
cv2.destroyAllWindows()
except Exception as e:
print(f"Error: {e}")
if __name__ == '__main__':
img_path = 'D:\pythonProject2\111.jpg'
medium_filter(img_path)
```
这样代码更加简洁、容错性更好、可读性更高。
def data_generator(): for folder in os.listdir("D:/wjd"): for file in os.listdir("D:/wjd/"+folder): file_paths = glob.glob('D:/wjd/*.png') for file_path in file_paths: img = Image.open(file_path) img = img.resize((224, 224)) img_arr = np.array(img) img_tensor = tf.convert_to_tensor(img_arr) img_tensor = tf.expand_dims(img_tensor, axis=0) print(img_tensor.shape) print(img_tensor.shape) # 输出张量的形状,我感觉不对,我应该删除那两行代码啊
是的,你是正确的。在这个数据生成器函数中,`print(img_tensor.shape)` 这行代码是不必要的,因为它只是输出张量的形状,而不是将它们返回给调用者。因此,你可以将这两行代码删除,如下所示:
```python
def data_generator():
for folder in os.listdir("D:/wjd"):
for file in os.listdir("D:/wjd/"+folder):
file_paths = glob.glob('D:/wjd/*.png')
for file_path in file_paths:
img = Image.open(file_path)
img = img.resize((224, 224))
img_arr = np.array(img)
img_tensor = tf.convert_to_tensor(img_arr)
img_tensor = tf.expand_dims(img_tensor, axis=0)
yield img_tensor
```
这样修改后,这个函数将会生成一个张量序列,每个张量代表一个图片。你可以将这个函数作为参数传递给你的模型,用于训练和测试。
阅读全文