TOPSIS matlab代码
时间: 2023-10-16 14:09:14 浏览: 179
以下是一个使用MATLAB实现TOPSIS方法的代码示例:
```MATLAB
% 原始决策矩阵
X = [89 1; 60 3; 74 2; 99 0];
% 标准化决策矩阵
normalized_X = X ./ repmat(sqrt(sum(X .* X)), size(X, 1), 1);
% 权重向量
weights = [0.5, 0.5];
% 正理想解和负理想解
pos_ideal_solution = max(normalized_X);
neg_ideal_solution = min(normalized_X);
% 计算每个方案到正理想解的距离
dist_pos_ideal = sqrt(sum((normalized_X - repmat(pos_ideal_solution, size(normalized_X, 1), 1)).^2, 2));
% 计算每个方案到负理想解的距离
dist_neg_ideal = sqrt(sum((normalized_X - repmat(neg_ideal_solution, size(normalized_X, 1), 1)).^2, 2));
% 计算综合评价指数
performance_score = dist_neg_ideal ./ (dist_pos_ideal + dist_neg_ideal);
% 根据综合评价指数排序
= sort(performance_score, 'descend');
% 输出排序结果
rank
```
这段代码首先将原始决策矩阵进行标准化,然后计算每个方案到正理想解和负理想解的距离,接着根据综合评价指数对方案进行排序,得到最终的排名结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [如何用matlaab把csv转为mat文件_数学建模竞赛学习笔记:用TOPSIS模型进行综合评价](https://blog.csdn.net/weixin_39653448/article/details/110309492)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文
相关推荐


















