人工智能使用树种算法或粒子群算法求解旅行商问题pythonaa代码编写
时间: 2024-10-18 09:13:45 浏览: 20
旅行商问题(TSP, Traveling Salesman Problem)是一个经典的组合优化问题,常用于演示遗传算法(如树种算法)和粒子群优化算法(PSO)。以下是使用Python和这两种算法的一个简化版代码示例:
**使用遗传算法(GA)求解TSP:**
```python
import random
from deap import base, creator, tools
# 定义问题
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
def distance(city1, city2):
# 假设城市间距离已知并存储在一个列表里
return distances[city1][city2]
def mate(ind1, ind2):
# 随机交叉点
cross_point = random.randint(1, len(ind1)-1)
return ind1[:cross_point] + ind2[cross_point:], ind2[:cross_point] + ind1[cross_point:]
def mutate(individual):
# 随机选择一个位置进行变异
city = random.randint(0, len(individual) - 1)
individual[city], individual[(city+1)%len(individual)] = individual[(city+1)%len(individual)], individual[city]
return individual,
toolbox = base.Toolbox()
toolbox.register("individual", creator.Individual, cities)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", mate)
toolbox.register("mutate", mutate)
toolbox.register("evaluate", evaluate_tsp)
toolbox.register("select", tools.selTournament, tournsize=3)
# 进行遗传算法搜索
pop = toolbox.population(n=50)
for gen in range(100):
offspring = toolbox.select(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < 0.7:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < 0.2:
toolbox.mutate(mutant)
del mutant.fitness.values
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
pop[:] = offspring
best_solution = tools.selBest(pop, k=1)[0]
# 输出最佳解决方案
```
**使用粒子群优化(PSO)求解TSP:**
```python
import numpy as np
import random
def tsp_distance(positions):
dist_matrix = [[distance(positions[i], positions[j]) for j in range(len(positions))] for i in range(len(positions))]
return sum([dist_matrix[i][j] for i in range(len(positions)) for j in range(i)])
def pso(tour_length, particles, velocity, best_position, best_fitness, c1, c2, w):
for i in range(particles.shape[0]):
r1, r2 = np.random.rand(), np.random.rand()
vel_i = w * velocity[i] + c1 * r1 * (best_position[i] - tour_positions[i]) + c2 * r2 * (global_best_position - tour_positions[i])
new_pos = np.clip(tour_positions[i] + vel_i, 0, len(cities) - 1)
if tsp_distance(new_pos) < tour_length[i]:
velocity[i] = vel_i
tour_positions[i] = new_pos
if tsp_distance(new_pos) < best_fitness:
best_position[i] = new_pos
global_best_position = new_pos
best_fitness = tsp_distance(new_pos)
return tour_positions, velocity, best_position, best_fitness
# 初始化粒子、速度等参数
...
while not done_condition: # 满足停止条件
...
tour_positions, velocity, _, _ = pso(...)
...
best_tour = global_best_position
```
请注意,这只是一个简化的版本,实际应用中可能需要更复杂的编码来处理大规模数据。以上代码中`distance()`函数和`cities`变量需要根据实际情况替换为实际的城市坐标列表。此外,这些算法通常不会直接给出最短路径,而是找到一组近似的解决方案。
阅读全文