用程序模拟磁盘的调度过程,并计算各磁盘调度算法包括先来先服务算法、最短寻道时间优先算法、扫描算法和循环扫描算法的平均寻道长度

时间: 2023-07-26 20:38:02 浏览: 65
好的,我可以提供一些思路和伪代码供你参考。 首先,需要定义磁盘调度算法的数据结构,包括磁盘请求队列、当前磁头位置和寻道方向等信息。然后,可以根据不同的算法实现相应的调度函数。 以下是伪代码示例: ```c // 定义磁盘请求结构体 typedef struct { int track; // 磁道号 int time; // 提交时间 } Request; // 定义磁盘调度算法结构体 typedef struct { Request queue[MAX_REQUESTS]; // 磁盘请求队列 int head; // 当前磁头位置 int direction; // 寻道方向,1表示向外,-1表示向内 int count; // 请求计数器 double total_distance; // 总寻道距离 } Scheduler; // 先来先服务算法 void fcfs(Scheduler* scheduler, Request request) { // 将请求加入队列尾部 scheduler->queue[scheduler->count++] = request; // 计算寻道距离 int distance = abs(request.track - scheduler->head); scheduler->total_distance += distance; // 更新磁头位置 scheduler->head = request.track; } // 最短寻道时间优先算法 void sstf(Scheduler* scheduler, Request request) { // 将请求加入队列尾部 scheduler->queue[scheduler->count++] = request; // 找到距离最近的请求 int min_distance = INT_MAX; int min_index = -1; for (int i = 0; i < scheduler->count; i++) { int distance = abs(scheduler->queue[i].track - scheduler->head); if (distance < min_distance) { min_distance = distance; min_index = i; } } // 计算寻道距离 scheduler->total_distance += min_distance; // 更新磁头位置 scheduler->head = scheduler->queue[min_index].track; // 将请求移到队列头部 Request temp = scheduler->queue[min_index]; for (int i = min_index; i > 0; i--) { scheduler->queue[i] = scheduler->queue[i - 1]; } scheduler->queue[0] = temp; } // 扫描算法 void scan(Scheduler* scheduler, Request request) { // 将请求加入队列尾部 scheduler->queue[scheduler->count++] = request; // 排序请求队列 for (int i = 0; i < scheduler->count - 1; i++) { for (int j = i + 1; j < scheduler->count; j++) { if (scheduler->queue[i].track > scheduler->queue[j].track) { Request temp = scheduler->queue[i]; scheduler->queue[i] = scheduler->queue[j]; scheduler->queue[j] = temp; } } } // 计算寻道距离 int distance = 0; int index = 0; while (index < scheduler->count && scheduler->queue[index].track < scheduler->head) { distance += abs(scheduler->queue[index].track - scheduler->head); scheduler->head = scheduler->queue[index].track; index++; } if (index < scheduler->count && scheduler->queue[index].track == scheduler->head) { index++; } while (index < scheduler->count) { distance += abs(scheduler->queue[index].track - scheduler->head); scheduler->head = scheduler->queue[index].track; index++; } scheduler->total_distance += distance; } // 循环扫描算法 void cscan(Scheduler* scheduler, Request request) { // 将请求加入队列尾部 scheduler->queue[scheduler->count++] = request; // 排序请求队列 for (int i = 0; i < scheduler->count - 1; i++) { for (int j = i + 1; j < scheduler->count; j++) { if (scheduler->queue[i].track > scheduler->queue[j].track) { Request temp = scheduler->queue[i]; scheduler->queue[i] = scheduler->queue[j]; scheduler->queue[j] = temp; } } } // 计算寻道距离 int distance = 0; int index = 0; while (index < scheduler->count && scheduler->queue[index].track < scheduler->head) { distance += abs(scheduler->queue[index].track - scheduler->head); scheduler->head = scheduler->queue[index].track; index++; } if (index < scheduler->count && scheduler->queue[index].track == scheduler->head) { index++; } if (index == scheduler->count) { // 如果已经扫描到队列末尾 distance += abs(scheduler->queue[0].track - scheduler->head); scheduler->head = scheduler->queue[0].track; index = 0; } while (index < scheduler->count) { distance += abs(scheduler->queue[index].track - scheduler->head); scheduler->head = scheduler->queue[index].track; index++; } scheduler->total_distance += distance; } // 计算平均寻道长度 double average_distance(Scheduler* scheduler) { return scheduler->total_distance / scheduler->count; } // 主函数 int main() { Scheduler scheduler; scheduler.head = 50; // 假设初始磁头位置为50 scheduler.direction = 1; // 假设初始寻道方向向外 scheduler.count = 0; scheduler.total_distance = 0.0; // 读取磁盘请求,调用相应的调度算法 while (has_request()) { Request request = read_request(); if (scheduler.direction == 1) { if (request.track >= scheduler.head) { fcfs(&scheduler, request); } else { scheduler.direction = -1; scan(&scheduler, request); } } else { if (request.track <= scheduler.head) { fcfs(&scheduler, request); } else { scheduler.direction = 1; cscan(&scheduler, request); } } } // 输出平均寻道长度 printf("FCFS: %lf\n", average_distance(&scheduler)); // 重新初始化调度算法结构体 scheduler.head = 50; scheduler.direction = 1; scheduler.count = 0; scheduler.total_distance = 0.0; // 读取磁盘请求,调用相应的调度算法 while (has_request()) { Request request = read_request(); sstf(&scheduler, request); } // 输出平均寻道长度 printf("SSTF: %lf\n", average_distance(&scheduler)); // 重新初始化调度算法结构体 scheduler.head = 50; scheduler.direction = 1; scheduler.count = 0; scheduler.total_distance = 0.0; // 读取磁盘请求,调用相应的调度算法 while (has_request()) { Request request = read_request(); scan(&scheduler, request); } // 输出平均寻道长度 printf("SCAN: %lf\n", average_distance(&scheduler)); // 重新初始化调度算法结构体 scheduler.head = 50; scheduler.direction = 1; scheduler.count = 0; scheduler.total_distance = 0.0; // 读取磁盘请求,调用相应的调度算法 while (has_request()) { Request request = read_request(); cscan(&scheduler, request); } // 输出平均寻道长度 printf("CSCAN: %lf\n", average_distance(&scheduler)); return 0; } ``` 需要注意的是,以上代码仅为伪代码示例,实际实现中需要考虑更多细节和异常情况。

相关推荐

最新推荐

recommend-type

磁盘调度算法(最短寻道时间优先算法(SSTF) 扫描算法(SCAN) 先来先服务算法(FCFS) 循环扫描算法(CSCAN)....)

最短寻道时间优先算法(SSTF) 扫描算法(SCAN) 先来先服务算法(FCFS) 循环扫描算法(CSCAN)....
recommend-type

具有先来先服务算法和最短寻道时间优先算法的磁盘调度算法实现

实现磁盘调度的一些功能,如:先来先服务算法(FCFS),最短寻道时间优先算法(SSTF),扫描算法(SCAN),循环扫描算法(CSCAN),N步扫描算法(NStepScan)
recommend-type

磁盘调度先来先服务 最短寻道时间优先

FCFS SSTF SCAN 算法 先来先服务 最短寻道时间优先 扫描
recommend-type

操作系统课程设计磁盘调度算法报告

报告和代码均有(1)先来先服务算法(FCFS) (2)最短寻道时间优先算法(SSTF) (3)扫描算法(SCAN) (4)循环扫描算法(CSCAN)
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依