python 图像配准
时间: 2023-09-13 16:07:47 浏览: 162
Python中有很多图像配准的库可以使用,例如OpenCV和scikit-image等。以下是一个简单的图像配准的示例:
1. 导入必要的库
```python
import cv2
import numpy as np
from skimage.feature import match_template
```
2. 加载图像
```python
img1 = cv2.imread('image1.png')
img2 = cv2.imread('image2.png')
```
3. 提取图像特征
```python
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)
```
4. 匹配特征点
```python
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1, des2)
matches = sorted(matches, key=lambda x: x.distance)
```
5. 计算变换矩阵
```python
src_pts = np.float32([kp1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
```
6. 应用变换矩阵
```python
h, w = img1.shape[:2]
aligned = cv2.warpPerspective(img2, M, (w, h))
```
以上代码将img2与img1进行配准,并将结果保存在aligned变量中。注意,这只是一个简单的示例代码,实际应用中可能需要进行更多的调整和优化。
阅读全文