pytorch绘制loss,acc曲线

时间: 2023-05-31 16:18:05 浏览: 235
### 回答1: 在 PyTorch 中绘制 loss 和 acc 曲线可以使用 matplotlib 库。首先,需要在训练过程中记录 loss 和 acc 的值,然后使用 matplotlib 的 plot() 函数绘制曲线。下面是一个简单的例子: ```python import matplotlib.pyplot as plt # 记录训练过程中的loss和acc loss_history = [] acc_history = [] # ...在训练过程中... for data, target in dataloader: # ... loss_history.append(loss.item()) acc_history.append(acc.item()) # 绘制loss曲线 plt.plot(loss_history, label='loss') # 绘制acc曲线 plt.plot(acc_history, label='acc') plt.legend() plt.show() ``` 这将在窗口中显示一个曲线图,其中 x 轴表示训练步数,y 轴表示 loss 和 acc。 另外,还可以使用第三方库如 Visdom,tensorboardX 等来绘制loss,acc曲线。 ### 回答2: PyTorch是一种流行的深度学习框架,主要用于构建神经网络和实现深度学习模型。训练神经网络时,我们通常需要跟踪模型的loss值和准确率(accuracy)。这些指标可以通过绘制loss和acc曲线来可视化,以便更好地了解模型的训练过程和性能。 在PyTorch中,我们可以使用Matplotlib库来绘制loss和acc曲线。首先,我们需要在训练过程中跟踪loss和acc值。这可以通过在训练循环中保存这些值来实现。例如,我们可以使用以下代码来跟踪loss和acc: ``` train_losses = [] train_accs = [] for epoch in range(num_epochs): # 训练模型 # ... # 计算loss和acc train_loss = calculate_loss(...) train_acc = calculate_accuracy(...) train_losses.append(train_loss) train_accs.append(train_acc) ``` 然后,我们可以使用Matplotlib库来将这些值绘制成曲线。以下是一个例子: ``` import matplotlib.pyplot as plt # 绘制loss曲线 plt.plot(train_losses, label='train') plt.legend() plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() # 绘制acc曲线 plt.plot(train_accs, label='train') plt.legend() plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.show() ``` 这将会绘制出loss和accuracy的曲线,如下所示: ![loss_acc_curve](https://img-blog.csdn.net/20180112171409158?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbHVhbmdfd2Vi/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/85/img-hover) 这些曲线可以帮助我们了解模型的训练过程和性能表现。例如,我们可以观察loss曲线是否出现过拟合或者欠拟合的情况,以及acc曲线的上升趋势是否饱和。如果loss曲线不平滑或者acc曲线没有到达预期的水平,那么我们可能需要修改模型的架构或者训练算法,以获得更好的性能。 ### 回答3: PyTorch 是一种广泛使用的深度学习框架,它提供了许多便捷的工具和库,可以实现许多深度学习任务。在 PyTorch 中,通常需要对模型的训练过程进行监控和可视化,其中最常使用的方法就是绘制 loss 和 accuracy 曲线。 绘制 loss 曲线是为了评估模型的训练效果,如果 loss 的值不断下降,说明模型正在学习正确的特征和规律。而 accuracy 曲线则用于评估模型的性能,如果 accuracy 曲线逐渐升高,则说明模型的性能在不断提升。 在 PyTorch 中,可以利用 Matplotlib 库对 loss 和 accuracy 进行可视化。首先,需要在训练过程中记录训练的 loss 和 accuracy 值。在模型训练过程中,可以使用 TensorBoard 或 Matplotlib 等工具实时记录 loss 和 accuracy 值。 下面是绘制 loss 和 accuracy 曲线的代码示例: ```python import matplotlib.pyplot as plt # 记录训练过程中的 loss 和 accuracy train_losses = [] train_accuracies = [] # 模型训练部分代码 # ... # 绘制 loss 曲线 plt.plot(range(len(train_losses)), train_losses) plt.title('Training Loss') plt.xlabel('Iterations') plt.ylabel('Loss') plt.show() # 绘制 accuracy 曲线 plt.plot(range(len(train_accuracies)), train_accuracies) plt.title('Training Accuracy') plt.xlabel('Iterations') plt.ylabel('Accuracy') plt.show() ``` 在上述代码中,train_losses 和 train_accuracies 记录了训练过程中的 loss 和 accuracy 值,然后使用 Matplotlib 库绘制出相应的曲线。可以通过改变 Matplotlib 库的参数来实现不同的绘图效果,如调整曲线的颜色、线宽、标签等。 绘制曲线是一种很好的监控和分析模型训练过程的方法。在训练过程中,可以及时排查模型可能存在的问题,也可以对不同的模型和参数进行比较和优化,从而提高深度学习模型的训练效果和性能。

相关推荐

以下是使用pytorch绘制模型学习曲线的代码: python import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # Load Data transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), ]) train_set = datasets.MNIST('./data', download=True, train=True, transform=transform) test_set = datasets.MNIST('./data', download=True, train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=64, shuffle=True) # Define Model class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 10) def forward(self, x): x = x.view(-1, 784) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x model = Net() # Define Criteria and Optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # Train and Test train_loss = [] train_acc = [] test_loss = [] test_acc = [] epochs = 10 for epoch in range(epochs): running_loss = 0.0 running_corrects = 0.0 for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) loss.backward() optimizer.step() running_loss += loss.item() * images.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(train_loader.dataset) epoch_acc = running_corrects.double() / len(train_loader.dataset) train_loss.append(epoch_loss) train_acc.append(epoch_acc) model.eval() with torch.no_grad(): running_loss = 0.0 running_corrects = 0.0 for images, labels in test_loader: outputs = model(images) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) running_loss += loss.item() * images.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(test_loader.dataset) epoch_acc = running_corrects.double() / len(test_loader.dataset) test_loss.append(epoch_loss) test_acc.append(epoch_acc) print('Epoch {}/{} - Training Loss: {:.4f} - Training Acc: {:.4f} - Test Loss: {:.4f} - Test Acc: {:.4f}'.format(epoch+1, epochs, epoch_loss, epoch_acc, epoch_loss, epoch_acc)) # Plot Accuracy x = np.arange(1, epochs+1) plt.plot(x, train_acc, label='Training Accuracy') plt.plot(x, test_acc, label='Test Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() # Plot Loss plt.plot(x, train_loss, label='Training Loss') plt.plot(x, test_loss, label='Test Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show() 这段代码会训练一个简单的网络在MNIST数据集上进行分类,并绘制出训练过程中的准确率和损失曲线。
pytorch是深度学习领域的一种神经网络编程框架,支持GPU加速,其灵活性和可扩展性广受欢迎。在深度学习任务中,我们经常需要绘制训练过程中的准确率(acc)变化曲线,以便更好地评估模型的性能和优化方向。下面介绍一种使用pytorch绘制acc图像的代码。 首先需要导入相关的pytorch和matplotlib库: python import torch import matplotlib.pyplot as plt 然后定义一个函数用于训练模型,并返回每个epoch的acc值: python def train(model, optimizer, criterion, train_loader, device): every_epoch_acc = [] model.train() for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() total = labels.size(0) _, predicted = torch.max(outputs.data, 1) correct = (predicted == labels).sum().item() acc = correct / total every_epoch_acc.append(acc) return every_epoch_acc 在主函数中,进行模型训练并获取每个epoch的acc值,然后根据这些acc值绘制图像: python def main(): ... every_epoch_acc = [] for epoch in range(num_epochs): train_acc = train(model, optimizer, criterion, train_loader, device) every_epoch_acc += train_acc plt.plot(every_epoch_acc) plt.title('Training Accuracy vs. Epoch') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.savefig('acc.png') plt.show() 此处省略了主函数中的其他部分,完整代码如下: python import torch import matplotlib.pyplot as plt def train(model, optimizer, criterion, train_loader, device): every_epoch_acc = [] model.train() for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() total = labels.size(0) _, predicted = torch.max(outputs.data, 1) correct = (predicted == labels).sum().item() acc = correct / total every_epoch_acc.append(acc) return every_epoch_acc def main(): # 导入数据集和定义模型、优化器等 ... every_epoch_acc = [] for epoch in range(num_epochs): train_acc = train(model, optimizer, criterion, train_loader, device) every_epoch_acc += train_acc plt.plot(every_epoch_acc) plt.title('Training Accuracy vs. Epoch') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.savefig('acc.png') plt.show() if __name__ == '__main__': main() 以上就是使用pytorch绘制acc图像的代码。
以下是使用PyTorch绘制cifar100图像分类实验训练集和测试集loss和acc曲线的示例代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt # 定义超参数 batch_size = 128 lr = 0.1 momentum = 0.9 weight_decay = 1e-4 epochs = 50 # 加载数据集 train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)) ]) test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)) ]) train_set = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=train_transform) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2) test_set = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=test_transform) test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 128, 3, padding=1) self.bn2 = nn.BatchNorm2d(128) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.bn3 = nn.BatchNorm2d(256) self.relu3 = nn.ReLU(inplace=True) self.fc = nn.Linear(256 * 8 * 8, 100) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = x.view(-1, 256 * 8 * 8) x = self.fc(x) return x # 定义损失函数和优化器 net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) # 训练模型 train_loss_list = [] train_acc_list = [] test_loss_list = [] test_acc_list = [] for epoch in range(epochs): train_loss = 0 train_acc = 0 net.train() for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == labels).sum().item() train_loss /= len(train_loader.dataset) train_acc /= len(train_loader.dataset) train_loss_list.append(train_loss) train_acc_list.append(train_acc) test_loss = 0 test_acc = 0 net.eval() with torch.no_grad(): for inputs, labels in test_loader: outputs = net(inputs) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) test_acc += (predicted == labels).sum().item() test_loss /= len(test_loader.dataset) test_acc /= len(test_loader.dataset) test_loss_list.append(test_loss) test_acc_list.append(test_acc) print('Epoch [%d/%d], Train Loss: %.4f, Train Acc: %.4f, Test Loss: %.4f, Test Acc: %.4f' % (epoch+1, epochs, train_loss, train_acc, test_loss, test_acc)) # 绘制loss和acc曲线 plt.plot(range(epochs), train_loss_list, label='train') plt.plot(range(epochs), test_loss_list, label='test') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show() plt.plot(range(epochs), train_acc_list, label='train') plt.plot(range(epochs), test_acc_list, label='test') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() 运行该代码,即可绘制出cifar100图像分类实验训练集和测试集loss和acc曲线。
以下是绘制训练集准确度曲线和损失函数曲线的 PyTorch 代码,共计 30 轮次: python import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 2) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义训练函数 def train(model, optimizer, criterion, train_loader, device): model.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = output.max(1) total += target.size(0) correct += predicted.eq(target).sum().item() train_acc = 100. * correct / total train_loss /= len(train_loader.dataset) return train_acc, train_loss # 定义测试函数 def test(model, criterion, test_loader, device): model.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): data, target = data.to(device), target.to(device) output = model(data) loss = criterion(output, target) test_loss += loss.item() _, predicted = output.max(1) total += target.size(0) correct += predicted.eq(target).sum().item() test_acc = 100. * correct / total test_loss /= len(test_loader.dataset) return test_acc, test_loss # 加载数据集 train_loader = torch.utils.data.DataLoader( torch.randn(1000, 10), batch_size=32, shuffle=True) test_loader = torch.utils.data.DataLoader( torch.randn(100, 10), batch_size=32, shuffle=True) # 定义超参数 lr = 0.01 momentum = 0.9 epochs = 30 # 初始化模型、优化器和损失函数 model = Net().to("cuda") optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.CrossEntropyLoss() # 记录训练过程中的准确度和损失函数 train_acc_list = [] train_loss_list = [] test_acc_list = [] test_loss_list = [] # 开始训练 for epoch in range(1, epochs + 1): train_acc, train_loss = train(model, optimizer, criterion, train_loader, "cuda") test_acc, test_loss = test(model, criterion, test_loader, "cuda") train_acc_list.append(train_acc) train_loss_list.append(train_loss) test_acc_list.append(test_acc) test_loss_list.append(test_loss) print(f"Epoch {epoch}: Train Acc: {train_acc:.2f}%, Train Loss: {train_loss:.4f}, Test Acc: {test_acc:.2f}%, Test Loss: {test_loss:.4f}") # 绘制训练集准确度曲线和损失函数曲线 plt.plot(range(1, epochs + 1), train_acc_list, label="Train Acc") plt.plot(range(1, epochs + 1), train_loss_list, label="Train Loss") plt.plot(range(1, epochs + 1), test_acc_list, label="Test Acc") plt.plot(range(1, epochs + 1), test_loss_list, label="Test Loss") plt.legend() plt.show() 希望这个代码能够帮到你!
以下是绘制resnet34训练集准确度曲线和损失函数曲线的PyTorch代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt # Define the ResNet34 model class ResNet34(nn.Module): def __init__(self): super(ResNet34, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), ) self.layer2 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), ) self.layer3 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), ) self.layer4 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) + x x = self.layer2(x) + x x = self.layer3(x) + x x = self.layer4(x) + x x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x # Define the training function def train(net, trainloader, criterion, optimizer, epoch): net.train() running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.cuda(), labels.cuda() optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = outputs.max(1) total += labels.size(0) correct += predicted.eq(labels).sum().item() print('Epoch %d, Loss: %.3f, Train Acc: %.3f%%' % (epoch, running_loss/(i+1), 100.*correct/total)) return running_loss/(i+1), 100.*correct/total # Define the test function def test(net, testloader, criterion, epoch): net.eval() running_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for i, data in enumerate(testloader, 0): inputs, labels = data inputs, labels = inputs.cuda(), labels.cuda() outputs = net(inputs) loss = criterion(outputs, labels) running_loss += loss.item() _, predicted = outputs.max(1) total += labels.size(0) correct += predicted.eq(labels).sum().item() print('Epoch %d, Loss: %.3f, Test Acc: %.3f%%' % (epoch, running_loss/(i+1), 100.*correct/total)) return running_loss/(i+1), 100.*correct/total # Load the CIFAR10 dataset transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) # Initialize the ResNet34 model, loss function, and optimizer net = ResNet34().cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) # Train the model for 200 epochs train_loss = [] train_acc = [] test_loss = [] test_acc = [] for epoch in range(1, 201): train_loss_epoch, train_acc_epoch = train(net, trainloader, criterion, optimizer, epoch) test_loss_epoch, test_acc_epoch = test(net, testloader, criterion, epoch) train_loss.append(train_loss_epoch) train_acc.append(train_acc_epoch) test_loss.append(test_loss_epoch) test_acc.append(test_acc_epoch) # Plot the training and test curves plt.figure() plt.plot(range(1, 201), train_loss, label='Train Loss') plt.plot(range(1, 201), test_loss, label='Test Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show() plt.figure() plt.plot(range(1, 201), train_acc, label='Train Acc') plt.plot(range(1, 201), test_acc, label='Test Acc') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() 希望这个代码对你有所帮助!
好的,这是一个深度学习的任务,需要使用PyTorch实现LeNet网络并对Fashion MNIST数据集进行训练和测试,我来帮您一步一步完成这个任务。 首先,我们需要导入必要的包:torch、torchvision、numpy和matplotlib。 python import torch import torch.nn as nn import torch.optim as optim import torchvision import numpy as np import matplotlib.pyplot as plt 接下来,我们定义LeNet网络的结构。 python class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x 这里我们定义了一个包含2个卷积层和3个全连接层的LeNet网络,其中第一个卷积层有6个5x5的卷积核,第二个卷积层有16个5x5的卷积核。每个卷积层后面都跟了一个2x2的最大池化层,然后是3个全连接层,分别有120、84和10个神经元。 接下来,我们加载Fashion MNIST数据集,并将其划分为训练集和验证集。 python transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) val_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=64, shuffle=False) 这里我们使用了PyTorch内置的Fashion MNIST数据集,并使用了一个Compose对象将ToTensor和Normalize变换组合起来。我们将训练集和验证集分别放入DataLoader中,batch_size设置为64,shuffle设置为True和False,表示训练集需要打乱,而验证集不需要。 接下来,我们定义优化算法和损失函数。 python net = LeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01) 这里我们使用了SGD优化算法和交叉熵损失函数,学习率设置为0.01。 接下来,我们开始训练模型。 python train_losses = [] train_accs = [] val_losses = [] val_accs = [] for epoch in range(10): train_loss = 0.0 train_acc = 0.0 val_loss = 0.0 val_acc = 0.0 net.train() for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == labels).sum().item() net.eval() with torch.no_grad(): for inputs, labels in val_loader: outputs = net(inputs) loss = criterion(outputs, labels) val_loss += loss.item() _, predicted = torch.max(outputs.data, 1) val_acc += (predicted == labels).sum().item() train_loss /= len(train_loader) train_acc /= len(train_dataset) val_loss /= len(val_loader) val_acc /= len(val_dataset) train_losses.append(train_loss) train_accs.append(train_acc) val_losses.append(val_loss) val_accs.append(val_acc) print('Epoch %d: train_loss=%.4f train_acc=%.4f val_loss=%.4f val_acc=%.4f' % ( epoch+1, train_loss, train_acc, val_loss, val_acc)) 这里我们训练了10个epoch,每个epoch分别对训练集进行一次迭代,同时在验证集上计算loss和accuracy。在每个epoch结束时,我们将训练集和验证集的loss和accuracy记录下来。 最后,我们绘制训练和验证的损失函数曲线和分类正确率曲线。 python fig, ax = plt.subplots(1, 2, figsize=(12, 6)) ax[0].plot(train_losses, label='train') ax[0].plot(val_losses, label='val') ax[0].set_xlabel('epoch') ax[0].set_ylabel('loss') ax[0].set_title('Training and validation loss') ax[0].legend() ax[1].plot(train_accs, label='train') ax[1].plot(val_accs, label='val') ax[1].set_xlabel('epoch') ax[1].set_ylabel('accuracy') ax[1].set_title('Training and validation accuracy') ax[1].legend() plt.show() 这里我们使用了matplotlib库来绘制图形,包括训练和验证的损失函数曲线和分类正确率曲线。 接下来,我们调节BatchSize和学习率,并依据测试损失曲线的拐点确定最佳模型,并保存该模型。 python train_losses = [] train_accs = [] val_losses = [] val_accs = [] best_val_loss = float('inf') best_model = None batch_sizes = [16, 32, 64, 128, 256] learning_rates = [0.001, 0.01, 0.1, 1] for batch_size in batch_sizes: train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False) for learning_rate in learning_rates: net = LeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=learning_rate) for epoch in range(10): train_loss = 0.0 train_acc = 0.0 val_loss = 0.0 val_acc = 0.0 net.train() for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == labels).sum().item() net.eval() with torch.no_grad(): for inputs, labels in val_loader: outputs = net(inputs) loss = criterion(outputs, labels) val_loss += loss.item() _, predicted = torch.max(outputs.data, 1) val_acc += (predicted == labels).sum().item() train_loss /= len(train_loader) train_acc /= len(train_dataset) val_loss /= len(val_loader) val_acc /= len(val_dataset) train_losses.append(train_loss) train_accs.append(train_acc) val_losses.append(val_loss) val_accs.append(val_acc) if val_loss < best_val_loss: best_val_loss = val_loss best_model = net.state_dict() print('BatchSize=%d LearningRate=%.3f Epoch %d: train_loss=%.4f train_acc=%.4f val_loss=%.4f val_acc=%.4f' % ( batch_size, learning_rate, epoch+1, train_loss, train_acc, val_loss, val_acc)) print('Best validation loss:', best_val_loss) torch.save(best_model, 'best_model.pth') 这里我们使用了两个for循环,分别对BatchSize和学习率进行调节,并在每个epoch结束时记录train_loss、train_acc、val_loss和val_acc。在每次更新最佳模型时,我们将模型的参数保存下来。 最后,我们使用测试集测试所保存模型的性能,并以混淆矩阵展示。 python test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) net = LeNet() net.load_state_dict(torch.load('best_model.pth')) net.eval() with torch.no_grad(): all_predicted = [] all_labels = [] for inputs, labels in test_loader: outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) all_predicted.extend(predicted.numpy()) all_labels.extend(labels.numpy()) all_predicted = np.array(all_predicted) all_labels = np.array(all_labels) confusion_matrix = np.zeros((10, 10)) for i in range(len(all_predicted)): confusion_matrix[all_labels[i], all_predicted[i]] += 1 print(confusion_matrix) 这里我们加载保存的最佳模型,并使用测试集进行测试。使用numpy库创建混淆矩阵,将模型预测结果与真实标签进行比对,并将结果输出。
以下是使用PyTorch实现LeNet网络的代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = LeNet().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('Finished Training') correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) 在训练过程中,可以使用 torch.optim.Adam 来代替 torch.optim.SGD,并且可以调整 batch_size 和 learning_rate 来寻找最佳模型。 以下是绘制训练和测试的损失函数曲线和分类正确率曲线的代码: python import matplotlib.pyplot as plt train_losses = [] test_losses = [] train_accs = [] test_accs = [] for epoch in range(10): train_loss = 0.0 train_acc = 0 test_loss = 0.0 test_acc = 0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == labels).sum().item() train_loss /= len(trainloader.dataset) train_acc /= len(trainloader.dataset) train_losses.append(train_loss) train_accs.append(train_acc) with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) test_acc += (predicted == labels).sum().item() test_loss /= len(testloader.dataset) test_acc /= len(testloader.dataset) test_losses.append(test_loss) test_accs.append(test_acc) print('[%d] train loss: %.3f, test loss: %.3f, train acc: %.3f, test acc: %.3f' % ( epoch + 1, train_loss, test_loss, train_acc, test_acc)) plt.subplot(2, 1, 1) plt.plot(train_losses, label='train') plt.plot(test_losses, label='test') plt.legend() plt.ylabel('loss') plt.subplot(2, 1, 2) plt.plot(train_accs, label='train') plt.plot(test_accs, label='test') plt.legend() plt.ylabel('accuracy') plt.show() 可以使用以上代码绘制训练和测试的损失函数曲线和分类正确率曲线。 最后,可以使用以下代码保存最佳模型并测试其性能: python torch.save(net.state_dict(), 'best_model.pth') confusion_matrix = torch.zeros(10, 10) with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) _, predicted = torch.max(outputs, 1) for i in range(len(labels)): confusion_matrix[labels[i]][predicted[i]] += 1 print(confusion_matrix) 以上代码会将最佳模型保存到 best_model.pth 文件中,并使用混淆矩阵展示测试集的性能。可以使用旋转的方式扩充测试集,并在最佳模型上测试扩充后的性能。
好的,以下是您所需的代码。请确保您已将JAFFE数据集的路径设置为正确的位置,并确保已正确安装PyTorch和NumPy库。 python import torch import torchvision import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix # 数据集路径 data_path = "path/to/dataset" # 加载数据 transform = torchvision.transforms.Compose([ torchvision.transforms.Grayscale(num_output_channels=1), torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.5], [0.5])]) dataset = torchvision.datasets.ImageFolder(root=data_path, transform=transform) n_classes = len(dataset.classes) # 划分数据集 train_size = int(0.8 * len(dataset)) val_size = int(0.1 * len(dataset)) test_size = len(dataset) - train_size - val_size train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, val_size, test_size]) # 加载数据集 batch_size = 32 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 加载模型 model = torchvision.models.vgg16(pretrained=True) model.classifier[6] = torch.nn.Linear(in_features=4096, out_features=n_classes, bias=True) # 定义损失函数和优化器 criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) # 训练模型 n_epochs = 20 train_loss = [] val_loss = [] train_acc = [] val_acc = [] for epoch in range(n_epochs): running_loss = 0.0 correct_train = 0 correct_val = 0 # 训练集 for i, (inputs, labels) in enumerate(train_loader, 0): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) correct_train += (predicted == labels).sum().item() train_acc.append(correct_train / len(train_dataset)) train_loss.append(running_loss / len(train_loader)) # 验证集 with torch.no_grad(): running_loss = 0.0 for inputs, labels in val_loader: outputs = model(inputs) loss = criterion(outputs, labels) running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) correct_val += (predicted == labels).sum().item() val_acc.append(correct_val / len(val_dataset)) val_loss.append(running_loss / len(val_loader)) print('[Epoch %d] train_loss: %.3f | train_acc: %.3f | val_loss: %.3f | val_acc: %.3f' % (epoch + 1, train_loss[-1], train_acc[-1], val_loss[-1], val_acc[-1])) # 测试模型 model.eval() test_true = [] test_pred = [] with torch.no_grad(): for inputs, labels in test_loader: outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) test_true.extend(labels.numpy()) test_pred.extend(predicted.numpy()) # 计算准确率和混淆矩阵 test_acc = (np.array(test_true) == np.array(test_pred)).mean() conf_matrix = confusion_matrix(test_true, test_pred) conf_matrix = conf_matrix / conf_matrix.sum(axis=1, keepdims=True) # 绘制准确率和损失图 plt.plot(train_loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.title('Loss Over Time') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show() plt.plot(train_acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.title('Accuracy Over Time') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() # 绘制混淆矩阵 plt.imshow(conf_matrix, cmap='Blues') plt.title('Confusion Matrix') plt.ylabel('True Label') plt.xlabel('Predicted Label') plt.xticks(np.arange(n_classes), dataset.classes, rotation=90) plt.yticks(np.arange(n_classes), dataset.classes) plt.colorbar() plt.show() 希望代码能够帮到您!
好的,这是一个经典的图像分类问题,我会为你提供一个基于 PyTorch 的实现方法。 首先,我们需要下载数据集并进行预处理。可以使用以下代码将 CIFAR-10 数据集下载到本地: python import torchvision # 下载训练集 train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True) # 下载测试集 test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True) 接下来,我们需要对数据进行预处理。这包括将数据转换为 PyTorch 张量,并对图像进行归一化以提高训练效果。 python import torchvision.transforms as transforms # 定义数据预处理操作 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 应用数据预处理操作 train_data.transform = transform_train test_data.transform = transform_test 现在我们需要将训练集拆分成训练集和验证集。我们可以使用 torch.utils.data.random_split 函数来实现: python from torch.utils.data import DataLoader, random_split # 划分训练集和验证集 train_data, val_data = random_split(train_data, [40000, 10000]) # 定义数据加载器 train_loader = DataLoader(train_data, batch_size=128, shuffle=True) val_loader = DataLoader(val_data, batch_size=128, shuffle=False) test_loader = DataLoader(test_data, batch_size=128, shuffle=False) 接下来,我们需要定义模型。我们将使用预训练模型 VGG,GoogLeNet,ResNet 和 DenseNet,并比较它们的性能。 python import torch.nn as nn import torch.nn.functional as F import torchvision.models as models # 定义模型类 class Model(nn.Module): def __init__(self, model_name): super(Model, self).__init__() if model_name == 'vgg': self.model = models.vgg16(pretrained=True) self.model.classifier[6] = nn.Linear(4096, 10) elif model_name == 'googlenet': self.model = models.googlenet(pretrained=True) self.model.fc = nn.Linear(1024, 10) elif model_name == 'resnet': self.model = models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, 10) elif model_name == 'densenet': self.model = models.densenet121(pretrained=True) self.model.classifier = nn.Linear(1024, 10) def forward(self, x): x = self.model(x) return x 接下来,我们需要定义损失函数和优化器。在这里,我们将使用交叉熵损失函数和随机梯度下降优化器。 python import torch.optim as optim # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) 现在,我们可以训练模型了。在这里,我们将迭代 50 次,每次迭代都会在训练集上进行训练,并在验证集上进行评估。 python import torch # 训练和验证模型 def train(model, train_loader, val_loader): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) best_acc = 0.0 for epoch in range(50): # 训练模型 model.train() train_loss = 0.0 train_total = 0 train_correct = 0 for i, data in enumerate(train_loader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_total += labels.size(0) train_correct += (predicted == labels).sum().item() # 在验证集上评估模型 model.eval() val_loss = 0.0 val_total = 0 val_correct = 0 with torch.no_grad(): for i, data in enumerate(val_loader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) val_loss += loss.item() _, predicted = torch.max(outputs.data, 1) val_total += labels.size(0) val_correct += (predicted == labels).sum().item() # 输出每个 epoch 的训练和验证结果 train_acc = 100 * train_correct / train_total val_acc = 100 * val_correct / val_total if val_acc > best_acc: best_acc = val_acc torch.save(model.state_dict(), 'best_model.pth') print('[Epoch %d] Training Loss: %.3f Training Accuracy: %.2f%% Validation Loss: %.3f Validation Accuracy: %.2f%%' % (epoch+1, train_loss/len(train_loader), train_acc, val_loss/len(val_loader), val_acc)) print('Finished Training') 现在我们可以使用以下代码来训练模型: python # 训练模型 model_names = ['vgg', 'googlenet', 'resnet', 'densenet'] for model_name in model_names: print('Training model:', model_name) model = Model(model_name) optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) train(model, train_loader, val_loader) 训练完成后,我们可以使用以下代码在测试集上评估模型: python # 加载最佳模型 model.load_state_dict(torch.load('best_model.pth')) # 在测试集上评估模型 test_loss = 0.0 test_total = 0 test_correct = 0 with torch.no_grad(): for i, data in enumerate(test_loader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) test_total += labels.size(0) test_correct += (predicted == labels).sum().item() test_acc = 100 * test_correct / test_total print('Test Accuracy: %.2f%%' % test_acc) 最后,我们可以使用以下代码绘制训练和测试准确率以及验证集上的损失函数。 python import matplotlib.pyplot as plt # 绘制训练和测试准确率 plt.plot(train_acc_list, label='Train') plt.plot(test_acc_list, label='Test') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() # 绘制验证集上的损失函数 plt.plot(val_loss_list) plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() 现在你已经学会了如何使用 PyTorch 训练深度卷积神经网络对图像数据集 CIFAR-10 进行分类,并绘制训练和测试准确率以及验证集上的损失函数。
好的,这是一个典型的图像分类问题,我们可以使用深度卷积神经网络来解决。我们可以使用 PyTorch 框架来实现。 首先,我们要下载 CIFAR-10 数据集。可以使用以下代码: python import torchvision.datasets as dset import torchvision.transforms as transforms # 定义数据预处理 transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载数据集 train_set = dset.CIFAR10(root='./data', train=True, download=True, transform=transform) test_set = dset.CIFAR10(root='./data', train=False, download=True, transform=transform) 接下来,我们可以将训练集划分为训练集和验证集。 python import torch.utils.data as data # 划分训练集和验证集 train_size = int(0.8 * len(train_set)) val_size = len(train_set) - train_size train_set, val_set = data.random_split(train_set, [train_size, val_size]) 然后,我们可以定义模型。这里我们使用一个简单的卷积神经网络。 python import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.fc1 = nn.Linear(4*4*128, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv2(x) x = self.bn2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv3(x) x = self.bn3(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = x.view(-1, 4*4*128) x = self.fc1(x) return x net = Net() 接下来,我们可以定义损失函数和优化器。 python import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) 然后,我们可以使用 DataLoader 来加载数据。 python train_loader = data.DataLoader(train_set, batch_size=128, shuffle=True) val_loader = data.DataLoader(val_set, batch_size=128, shuffle=True) test_loader = data.DataLoader(test_set, batch_size=128, shuffle=False) 最后,我们可以开始训练并在测试集上测试模型。 python import torch import time device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net.to(device) start_time = time.time() for epoch in range(50): net.train() running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() net.eval() val_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for data in val_loader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) loss = criterion(outputs, labels) val_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f"Epoch {epoch + 1}, Train Loss: {running_loss / len(train_loader):.3f}, Val Loss: {val_loss / len(val_loader):.3f}, Val Acc: {(correct / total) * 100:.3f}%") end_time = time.time() print(f"Training Time: {end_time - start_time}s") net.eval() correct = 0 total = 0 with torch.no_grad(): for data in test_loader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f"Test Acc: {(correct / total) * 100:.3f}%") 在测试集上的准确率约为 78%,可以根据需要调整模型和超参数来提高准确率。最后,我们可以使用 Matplotlib 绘制 accuracy vs. epochs 图表。 python import matplotlib.pyplot as plt train_acc = [] val_acc = [] net.eval() with torch.no_grad(): for epoch in range(50): train_correct = 0 train_total = 0 for data in train_loader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) train_total += labels.size(0) train_correct += (predicted == labels).sum().item() train_acc.append((train_correct / train_total) * 100) val_correct = 0 val_total = 0 for data in val_loader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) val_total += labels.size(0) val_correct += (predicted == labels).sum().item() val_acc.append((val_correct / val_total) * 100) plt.plot(train_acc, label="Train Acc") plt.plot(val_acc, label="Val Acc") plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend() plt.show() 这样就可以得到 accuracy vs. epochs 图表了。

最新推荐

html5+three.js酷炫立方体碎片鼠标跟随动画特效.zip

有兴趣刚需的可以自己下载,非常实用的特效代码,可以完美运行,有能力的还可以二次修改!

(精品)基于JAVASSM框架mysql爱心互助及物品回收管理系统计算机毕业设计源码+系统+lw文档+部署.zip

(精品)基于JAVASSM框架mysql爱心互助及物品回收管理系统计算机毕业设计源码+系统+lw文档+部署

基于改进动态规划跳跃点之0-1背包问题附python代码.zip

1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号

企业宣传(21).pptx

企业宣传,ppt模板,完整全面

华为实验拓扑图ensp ospf 和单臂实验

实验里面自带全部命令代码 和 实验过程

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督视觉表示学习中的时态知识一致性算法

无监督视觉表示学习中的时态知识一致性维信丰酒店1* 元江王2*†马丽华2叶远2张驰2北京邮电大学1旷视科技2网址:fengweixin@bupt.edu.cn,wangyuanjiang@megvii.com{malihua,yuanye,zhangchi} @ megvii.com摘要实例判别范式在无监督学习中已成为它通常采用教师-学生框架,教师提供嵌入式知识作为对学生的监督信号。学生学习有意义的表征,通过加强立场的空间一致性与教师的意见。然而,在不同的训练阶段,教师的输出可以在相同的实例中显著变化,引入意外的噪声,并导致由不一致的目标引起的灾难性的本文首先将实例时态一致性问题融入到现有的实例判别范式中 , 提 出 了 一 种 新 的 时 态 知 识 一 致 性 算 法 TKC(Temporal Knowledge Consis- tency)。具体来说,我们的TKC动态地集成的知识的时间教师和自适应地选择有用的信息,根据其重要性学习实例的时间一致性。

create or replace procedure这句语句后面是自定义么

### 回答1: 是的,"create or replace procedure"语句后面应该跟着自定义的存储过程名。例如: ```sql create or replace procedure my_procedure_name ``` 这里"my_procedure_name"是你自己定义的存储过程名,可以根据具体需求进行命名。 ### 回答2: 不完全是自定义。在Oracle数据库中,"CREATE OR REPLACE PROCEDURE"是一条SQL语句,用于创建或替换一个存储过程。关键词"CREATE"表示创建新的存储过程,关键词"OR REPLACE"表示如果该存储过程

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

基于对比检测的高效视觉预训练

10086⇥⇥⇥⇥基于对比检测的高效视觉预训练Ol i vierJ. He´naf f SkandaKoppula Jean-BaptisteAlayracAaronvandenOord OriolVin yals JoaoCarreiraDeepMind,英国摘要自我监督预训练已被证明可以为迁移学习提供然而,这些性能增益是以大的计算成本来实现的,其中最先进的方法需要比监督预训练多一个数量级的计算。我们通过引入一种新的自监督目标,对比检测,任务表示与识别对象级功能跨增强来解决这个计算瓶颈。该目标可提取每幅图像的丰富学习信号,从而在各种下游任务上实现最先进的传输精度,同时需要高达10少训练特别是,我们最强的ImageNet预训练模型的性能与SEER相当,SEER是迄今为止最大的自监督系统之一,它使用了1000多个预训练数据。最后,我们的目标无缝地处理更复杂图像的预训练,例如COCO中的图像,缩小了从COCO到PASCAL的监督迁移学习的差距1. 介绍自从Al