import org.apache.spark.SparkContext import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.sql.SQLContext class Sale { } object Sale { case class Sale(cardId:String,productId:Int,quantity:Int,money:Double) def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("Pharmacy Sales Analysis").setMaster("local") val sc = new SparkContext(conf) sc.setLogLevel("ERROR") val sqlContext = new SQLContext(sc) // load data val data = sc.textFile(args(0)) // parse data val salesRDD: RDD[Sale] = data.map(line => line.split(" ")).map(arr => Sale(arr(0), arr(1).toInt, arr(2).toInt, arr(3).toDouble)) import sqlContext.implicits._ val df = salesRDD.toDF() val nameMoneyDF = df.select("productId","money","quantity") nameMoneyDF.show(5) val totalSales = nameMoneyDF.groupBy("productId").sum("quantity") totalSales.show(5) // calculate total sales quantity and revenue } }帮我统计所有产品销售额,quantity为销售数量,money为产品单价
时间: 2024-02-23 12:57:21 浏览: 126
基于sacla开发sparksql、sparksession所需要的jar包.rar
好的,可以使用Spark SQL来实现该功能。请确认一下你的输入数据格式是否为以下格式:
```
cardId1 productId1 quantity1 money1
cardId2 productId2 quantity2 money2
...
```
如果是的话,你可以使用以下代码来统计所有产品销售额:
```scala
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
class Sale {}
object Sale {
case class Sale(cardId:String,productId:Int,quantity:Int,money:Double)
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Pharmacy Sales Analysis").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("ERROR")
val sqlContext = new SQLContext(sc)
// load data
val data = sc.textFile(args(0))
// parse data
val salesRDD: RDD[Sale] = data.map(line => line.split(" ")).map(arr => Sale(arr(0), arr(1).toInt, arr(2).toInt, arr(3).toDouble))
import sqlContext.implicits._
val df = salesRDD.toDF()
// group by productId and calculate total sales quantity and revenue
val totalSales = df.groupBy("productId").agg(sum("quantity"), sum("money") * sum("quantity")).toDF("productId", "totalQuantity", "totalRevenue")
totalSales.show()
}
}
```
这里使用了DataFrame的`groupBy`和`agg`方法来按照`productId`分组,然后分别对`quantity`和`money`进行求和,并计算出销售额。最后使用`toDF`方法来将结果转换为DataFrame并展示出来。
阅读全文