创建命名空间 quota-example,在 master节点/root目录下编写yaml,具体要求如下: (1)ResourseQuota名称: compute-resources; (2)命名空间: quota-example; (3)命名空间内所有Pod数量不超过4; (4)命名空间内所有容器内存申请总和不得超过1G; (5)命名空间内所有内存限制不得超过2G;4 (6)命名空间内所有容器申请的CPU不得超过1 (7)命名空间内所有容器限制的CPU不得超过2。

时间: 2024-04-17 08:27:02 浏览: 65
以下是在Master节点的`/root`目录下创建`quota.yaml`文件的示例内容,满足你的要求: ```yaml apiVersion: v1 kind: ResourceQuota metadata: name: compute-resources namespace: quota-example spec: hard: pods: "4" requests.memory: 1Gi limits.memory: 2Gi requests.cpu: "1" limits.cpu: "2" ``` 请将以上内容复制到名为`quota.yaml`的文件中,并在Master节点的`/root`目录下保存。然后,你可以使用以下命令创建ResourceQuota: ``` kubectl create -f quota.yaml ``` 这将在quota-example命名空间中创建一个名为`compute-resources`的ResourceQuota,它限制了该命名空间内的资源使用情况。具体限制如下: - 最大Pod数量为4个; - 内存申请总和不得超过1GB; - 内存限制不得超过2GB; - CPU申请总和不得超过1个核心; - CPU限制不得超过2个核心。 请注意,以上配置是示例,你可以根据实际需求进行调整和修改。
相关问题

controlPlaneEndpoint: "kubernetes.example.com:6443" # 控制平面节点的访问地址 etcd: external: endpoints: - https://etcd1.example.com:2379 - https://etcd2.example.com:2379 - https://etcd3.example.com:2379 caFile: /etc/kubernetes/pki/etcd/ca.crt certFile: /etc/kubernetes/pki/etcd/server.crt keyFile: /etc/kubernetes/pki/etcd/server.key networking: podSubnet: 10.244.0.0/16 # Pod 网络子网段 apiServer: extraArgs: enable-admission-plugins: "NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota" service-account-issuer: kubernetes.default.svc service-account-key-file: /etc/kubernetes/pki/sa.key controllerManager: extraArgs: cluster-signing-cert-file: /etc/kubernetes/pki/ca.crt cluster-signing-key-file: /etc/kubernetes/pki/ca.key scheduler: extraArgs: address: 0.0.0.0 dns: type: CoreDNS

这个配置文件是一个 Kubernetes 集群的初始化配置文件,包含了一些关键的配置选项。 `controlPlaneEndpoint` 指定了控制平面节点的访问地址,其中 "kubernetes.example.com" 是访问地址,端口为 6443。 `etcd` 部分定义了外部 etcd 集群的连接信息和证书。`endpoints` 列出了 etcd 节点的地址,`caFile`、`certFile` 和 `keyFile` 指定了与 etcd 进行通信所需的证书和密钥文件。 `networking` 部分定义了 Pod 网络的子网段,这里使用的是 10.244.0.0/16。 `apiServer` 部分包含了 API 服务器的额外参数配置。在这里,我们启用了一些 Admission 控制插件,并指定了服务账号的签发者和密钥文件。 `controllerManager` 部分包含了控制器管理器的额外参数配置。这里指定了集群签名证书的文件路径。 `scheduler` 部分包含了调度器的额外参数配置。在这里,我们将调度器绑定到 0.0.0.0 地址,使其可以接收来自任意 IP 的请求。 最后,`dns` 部分指定了 DNS 的类型,这里使用的是 CoreDNS。 这个配置文件提供了一些关键的配置选项,可以根据实际需求进行修改和扩展。

apiVersion: kubeadm.k8s.io/v1beta3 kind: ClusterConfiguration kubernetesVersion: 1.23.1 # 控制平面组件配置 controlPlaneEndpoint: "kubernetes.example.com:6443" # 控制平面节点的访问地址 etcd: external: endpoints: - https://etcd1.example.com:2379 - https://etcd2.example.com:2379 - https://etcd3.example.com:2379 caFile: /etc/kubernetes/pki/etcd/ca.crt certFile: /etc/kubernetes/pki/etcd/server.crt keyFile: /etc/kubernetes/pki/etcd/server.key networking: podSubnet: 10.244.0.0/16 # Pod 网络子网段 apiServer: extraArgs: enable-admission-plugins: "NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota" service-account-issuer: kubernetes.default.svc service-account-key-file: /etc/kubernetes/pki/sa.key controllerManager: extraArgs: cluster-signing-cert-file: /etc/kubernetes/pki/ca.crt cluster-signing-key-file: /etc/kubernetes/pki/ca.key scheduler: extraArgs: address: 0.0.0.0 dns: type: CoreDNS --- apiVersion: kubeadm.k8s.io/v1beta3 kind: InitConfiguration localAPIEndpoint: advertiseAddress: 172.31.186.226 bindPort: 6443 --- apiVersion: kubelet.config.k8s.io/v1beta1 kind: KubeletConfiguration cgroupDriver: systemd

这是一个 Kubernetes 集群配置文件的示例,包含了 ClusterConfiguration、InitConfiguration 和 KubeletConfiguration 三个部分。 ClusterConfiguration 部分包含了一些关键的集群配置选项: - `apiVersion: kubeadm.k8s.io/v1beta3` 表示使用的是 kubeadm 的 v1beta3 版本的 API。 - `kind: ClusterConfiguration` 表示这个配置文件是用于配置整个集群的。 - `kubernetesVersion: 1.23.1` 指定了 Kubernetes 的版本。 - `controlPlaneEndpoint` 指定了控制平面节点的访问地址。 - `etcd` 部分定义了外部 etcd 集群的连接信息和证书。 - `networking` 部分定义了 Pod 网络的子网段。 - `apiServer` 部分包含了 API 服务器的额外参数配置。 - `controllerManager` 部分包含了控制器管理器的额外参数配置。 - `scheduler` 部分包含了调度器的额外参数配置。 - `dns` 部分指定了 DNS 的类型。 InitConfiguration 部分用于配置初始化节点的参数,其中 `advertiseAddress` 和 `bindPort` 分别指定了初始化节点的广告地址和绑定端口。 KubeletConfiguration 部分用于配置 Kubelet 的运行参数,这里指定了 Kubelet 使用 systemd 作为 cgroup 驱动程序。 这个示例提供了一个完整的配置文件,可以用来初始化和配置 Kubernetes 集群。根据实际需求,你可以根据这个示例进行修改和扩展。

相关推荐

最新推荐

recommend-type

G:\linux基本试题\Linux试题大全及参考答案(1)--填空题.doc

* 设定限制用户使用磁盘空间的命令是 quota。 五、设备驱动程序 * 当想删除本系统用不上的设备驱动程序时必须编译内核,当内核不支持系统上的设备驱动程序时,必须对内核升级。 六、Shell 程序 * 编写的 Shell ...
recommend-type

基于微信小程序的新生报到系统设计与实现.docx

基于微信小程序的新生报到系统设计与实现.docx
recommend-type

基于java的电商平台的设计与实现.docx

基于java的电商平台的设计与实现.docx
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【图结构优化】:在JavaScript中实现与提升性能的策略

![【图结构优化】:在JavaScript中实现与提升性能的策略](https://d14b9ctw0m6fid.cloudfront.net/ugblog/wp-content/uploads/2020/10/4.png) # 1. 图结构基础与JavaScript中的应用场景 ## 图结构基础概念 图是一种非线性数据结构,由一系列节点(顶点)和连接节点的边组成。它能够用来模拟复杂的关系网络,比如社交网络、互联网、交通网络等。在图结构中,有无向图和有向图之分,分别用来表示关系是否具有方向性。 ## 图结构的基本操作 图结构的操作包括添加或删除节点和边、寻找两个节点之间的路径、计算顶点的度