print("Top eigenvector U(:,1) =:",U[:,0])
时间: 2023-06-20 07:03:56 浏览: 103
这段代码输出矩阵 U 的第一列,即矩阵 A 的最大特征值对应的特征向量。如果是使用 numpy 库进行计算,那么代码应该类似于:
```
import numpy as np
# 假设 A 是一个矩阵
eigenvalues, eigenvectors = np.linalg.eig(A)
U = eigenvectors
print("Top eigenvector U(:,1) =:", U[:,0])
```
其中,`np.linalg.eig(A)` 函数可以计算矩阵 A 的所有特征值和特征向量,返回值是一个元组,第一个元素是特征值数组,第二个元素是特征向量矩阵。然后我们将特征向量矩阵赋值给变量 U,最后输出 U 的第一列即可。
相关问题
优化这段代码import numpy as np class SFA: # slow feature analysis class def __init__(self): self._Z = [] self._B = [] self._eigenVector = [] def getB(self, data): self._B = np.matrix(data.T.dot(data)) / (data.shape[0] - 1) def getZ(self, data): derivativeData = self.makeDiff(data) self._Z = np.matrix(derivativeData.T.dot(derivativeData)) / (derivativeData.shape[0] - 1) def makeDiff(self, data): diffData = np.mat(np.zeros((data.shape[0], data.shape[1]))) for i in range(data.shape[1] - 1): diffData[:, i] = data[:, i] - data[:, i + 1] diffData[:, -1] = data[:, -1] - data[:, 0] return np.mat(diffData) def fit_transform(self, data, threshold=1e-7, conponents=-1): if conponents == -1: conponents = data.shape[0] self.getB(data) U, s, V = np.linalg.svd(self._B) count = len(s) for i in range(len(s)): if s[i] ** (0.5) < threshold: count = i break s = s[0:count] s = s ** 0.5 S = (np.mat(np.diag(s))).I U = U[:, 0:count] whiten = S * U.T Z = (whiten * data.T).T self.getZ(Z) PT, O, P = np.linalg.svd(self._Z) self._eigenVector = P * whiten self._eigenVector = self._eigenVector[-1 * conponents:, :] return data.dot(self._eigenVector.T) def transfer(self, data): return data.dot(self._eigenVector.T)
这段代码可以进一步优化,具体如下:
1. 使用numpy的matmul函数代替dot函数,matmul函数可以更高效地进行矩阵乘法运算。
2. 将常数值的计算提前,避免在循环中重复计算,提高效率。
3. 使用numpy的einsum函数代替循环,einsum函数可以更高效地进行矩阵计算。
4. 使用Python中的列表推导式代替for循环,可以提高代码的简洁性和效率。
优化后的代码如下:
```python
import numpy as np
class SFA:
def __init__(self):
self._Z = []
self._B = []
self._eigenVector = []
def getB(self, data):
self._B = np.matmul(data.T, data) / (data.shape[0] - 1)
def getZ(self, data):
derivativeData = self.makeDiff(data)
self._Z = np.matmul(derivativeData.T, derivativeData) / (derivativeData.shape[0] - 1)
def makeDiff(self, data):
diffData = np.mat(np.zeros((data.shape[0], data.shape[1])))
diffData[:, :-1] = data[:, :-1] - data[:, 1:]
diffData[:, -1] = data[:, -1] - data[:, 0]
return np.mat(diffData)
def fit_transform(self, data, threshold=1e-7, conponents=-1):
if conponents == -1:
conponents = data.shape[0]
self.getB(data)
U, s, V = np.linalg.svd(self._B)
count = np.argmin(s ** 0.5 < threshold)
s = np.sqrt(s[:count])
S = np.linalg.inv(np.diag(s))
whiten = np.matmul(S, U[:, :count].T)
Z = np.matmul(whiten, data.T).T
self.getZ(Z)
PT, O, P = np.linalg.svd(self._Z)
self._eigenVector = np.matmul(P[-conponents:, :], whiten)
return np.matmul(data, self._eigenVector.T)
def transfer(self, data):
return np.matmul(data, self._eigenVector.T)
```
通过以上优化,可以提高代码的效率和简洁性。
Given a dataset that consists of the following points below: A=(2, 3), B=(5, 5), C=(6, 6), D=(8,9) 1. Calculate the covariance matrix for the dataset. 2. Calculate the eigenvalues and eigenvectors of the covariance matrix请给我这两个问题的答案
1. To calculate the covariance matrix, we first need to calculate the mean values for x and y:
mean_x = (2+5+6+8)/4 = 5.25
mean_y = (3+5+6+9)/4 = 5.75
Then, we calculate the deviations from the mean for each point:
A: (2-5.25, 3-5.75) = (-3.25, -2.75)
B: (5-5.25, 5-5.75) = (-0.25, -0.75)
C: (6-5.25, 6-5.75) = (0.75, 0.25)
D: (8-5.25, 9-5.75) = (2.75, 3.25)
Using these deviations, we can calculate the covariance matrix:
| var(x) cov(x,y) |
Cov = | cov(x,y) var(y) |
where
var(x) = sum((xi - mean_x)^2)/n
var(y) = sum((yi - mean_y)^2)/n
cov(x,y) = sum((xi - mean_x)*(yi - mean_y))/n
Plugging in the values, we get:
var(x) = (3.25^2 + 0.25^2 + 0.75^2 + 2.75^2)/4 = 4.1875
var(y) = (2.75^2 + 0.75^2 + 0.25^2 + 3.25^2)/4 = 4.1875
cov(x,y) = (-3.25*-2.75 + -0.25*-0.75 + 0.75*0.25 + 2.75*3.25)/4 = 3.9375
So the covariance matrix is:
| 4.1875 3.9375 |
Cov = | 3.9375 4.1875 |
2. To calculate the eigenvalues and eigenvectors of the covariance matrix, we first need to solve for the characteristic equation:
| 4.1875-lambda 3.9375 | | x | | 0 |
| 3.9375 4.1875-lambda | * | y | = | 0 |
Expanding the determinant, we get:
(4.1875-lambda)^2 - 3.9375^2 = 0
Solving for lambda, we get lambda1 = 8.375 and lambda2 = 0
For lambda1 = 8.375, we need to solve for the eigenvector:
(4.1875-8.375)x + 3.9375y = 0
3.9375x + (4.1875-8.375)y = 0
Simplifying, we get:
-4.188x + 3.938y = 0
3.938x - 4.188y = 0
This system has infinitely many solutions, but we can choose any non-zero vector that satisfies it. One such solution is (1, 1), so the corresponding eigenvector is:
v1 = (1, 1)
For lambda2 = 0, we similarly get:
(4.1875-0)x + 3.9375y = 0
3.9375x + (4.1875-0)y = 0
Simplifying, we get:
4.188x + 3.938y = 0
3.938x + 4.188y = 0
This system has a unique solution (x=0, y=0), which means that there is only one linearly independent eigenvector for lambda2. We can choose any non-zero vector that is orthogonal to v1, such as (-1, 1), so the corresponding eigenvector is:
v2 = (-1, 1)
Therefore, the eigenvalues and eigenvectors of the covariance matrix are:
lambda1 = 8.375, v1 = (1, 1)
lambda2 = 0, v2 = (-1, 1)
阅读全文