fortran90实现快速傅立叶变换的函数
时间: 2023-11-27 07:03:43 浏览: 107
下面是Fortran90实现快速傅立叶变换的函数:
```
subroutine fft(x, N, isign)
implicit none
integer, intent(in) :: N, isign
complex*16, intent(inout) :: x(N)
integer :: i, j, k, n1, n2, n3, n4, i1, i2, i3, i4
double precision :: c1, c2, h1r, h1i, h2r, h2i, wr, wi, wpr, wpi, wtemp
! Bit-reverse permutation
j = 1
do i = 1, N-1
if (i .lt. j) then
t = x(j)
x(j) = x(i)
x(i) = t
endif
k = N/2
do while (k .lt. j)
j = j - k
k = k/2
enddo
j = j + k
enddo
! FFT loop
n1 = 0
n2 = 1
do i = 0, log(N)/log(2)-1
n3 = n2*2
n4 = n1
do j = 0, n2-1
if (isign .lt. 0) then
c1 = cos(2.0d0*3.141592653589793d0*j/n3)
c2 = sin(2.0d0*3.141592653589793d0*j/n3)
else
c1 = cos(2.0d0*3.141592653589793d0*j/n3)
c2 = -sin(2.0d0*3.141592653589793d0*j/n3)
endif
do k = j, N-1, n3
i1 = k
i2 = k + n2
i3 = n4 + k
i4 = i3 + n2
h1r = dble(x(i1))
h1i = dimag(x(i1))
h2r = dble(c1*x(i2)) - dimag(c2*x(i2))
h2i = dble(c2*x(i2)) + dimag(c1*x(i2))
x(i1) = cmplx(h1r + h2r, h1i + h2i)
x(i2) = cmplx(h1r - h2r, h1i - h2i)
h1r = dble(x(i3))
h1i = dimag(x(i3))
h2r = dble(c1*x(i4)) - dimag(c2*x(i4))
h2i = dble(c2*x(i4)) + dimag(c1*x(i4))
x(i3) = cmplx(h1r + h2r, h1i + h2i)
x(i4) = cmplx(h1r - h2r, h1i - h2i)
enddo
enddo
n1 = n2
n2 = n3
enddo
! Normalization
if (isign .lt. 0) then
do i = 1, N
x(i) = x(i)/dble(N)
enddo
endif
end subroutine fft
```
此函数名为`fft`,有三个输入参数:`x`是一个长度为`N`的复数数组,`N`是数组的长度,`isign`是正负号标志,用于指定是进行正向变换还是反向变换。函数中使用了Cooley-Tukey快速傅立叶变换算法。
阅读全文