python实现网格聚类
时间: 2023-06-29 16:14:15 浏览: 90
网格聚类是一种聚类算法,它可以将数据点划分到网格中,然后在每个网格中进行聚类。Python中可以使用scikit-learn库中的MiniBatchKMeans类来实现网格聚类。
具体实现方法如下:
1. 导入必要的库和数据集
``` python
from sklearn.cluster import MiniBatchKMeans
from sklearn.datasets import make_blobs
import numpy as np
# 生成一个随机数据集
X, y = make_blobs(n_samples=10000, n_features=2, centers=10, random_state=42)
```
2. 定义网格大小和聚类数量
``` python
# 定义网格大小和聚类数量
grid_size = 0.02
n_clusters = 10
```
3. 创建网格
``` python
# 创建网格
grid_x, grid_y = np.meshgrid(
np.arange(X[:,0].min(), X[:,0].max(), grid_size),
np.arange(X[:,1].min(), X[:,1].max(), grid_size)
)
```
4. 训练模型并进行预测
``` python
# 训练模型并进行预测
kmeans = MiniBatchKMeans(n_clusters=n_clusters)
kmeans.fit(X)
labels = kmeans.predict(np.c_[grid_x.ravel(), grid_y.ravel()])
```
5. 可视化结果
``` python
# 可视化结果
import matplotlib.pyplot as plt
plt.scatter(X[:,0], X[:,1], c=kmeans.predict(X))
plt.scatter(grid_x.ravel(), grid_y.ravel(), c=labels, alpha=0.3)
plt.xlim(X[:,0].min(), X[:,0].max())
plt.ylim(X[:,1].min(), X[:,1].max())
plt.show()
```
完整代码如下:
``` python
from sklearn.cluster import MiniBatchKMeans
from sklearn.datasets import make_blobs
import numpy as np
import matplotlib.pyplot as plt
# 生成一个随机数据集
X, y = make_blobs(n_samples=10000, n_features=2, centers=10, random_state=42)
# 定义网格大小和聚类数量
grid_size = 0.02
n_clusters = 10
# 创建网格
grid_x, grid_y = np.meshgrid(
np.arange(X[:,0].min(), X[:,0].max(), grid_size),
np.arange(X[:,1].min(), X[:,1].max(), grid_size)
)
# 训练模型并进行预测
kmeans = MiniBatchKMeans(n_clusters=n_clusters)
kmeans.fit(X)
labels = kmeans.predict(np.c_[grid_x.ravel(), grid_y.ravel()])
# 可视化结果
plt.scatter(X[:,0], X[:,1], c=kmeans.predict(X))
plt.scatter(grid_x.ravel(), grid_y.ravel(), c=labels, alpha=0.3)
plt.xlim(X[:,0].min(), X[:,0].max())
plt.ylim(X[:,1].min(), X[:,1].max())
plt.show()
```
阅读全文