PER-DQN是什么
时间: 2023-12-24 18:24:46 浏览: 163
根据提供的引用内容,没有直接提到PER-DQN。但是可以根据引用中提到的Ensemble-DQN和Averaged-DQN来推测PER-DQN的含义。PER-DQN是Prioritized Experience Replay Deep Q-Network的缩写,是一种基于经验回放的深度强化学习算法。与传统的DQN算法不同,PER-DQN使用优先级队列来存储经验,以便更有效地学习重要的经验。在PER-DQN中,经验被赋予不同的优先级,优先级高的经验被更频繁地抽样以便更好地学习。因此,PER-DQN在学习效率和性能方面优于传统的DQN算法。
相关问题
dqn python代码
以下是DQN算法的Python实现(使用TensorFlow):
```python
import tensorflow as tf
import numpy as np
import gym
# 创建游戏环境
env = gym.make('CartPole-v0')
# 定义超参数
learning_rate = 0.01
discount_factor = 0.99
batch_size = 64
memory_size = 10000
epsilon = 1.0
epsilon_decay = 0.9995
min_epsilon = 0.01
n_episodes = 2000
n_steps_per_episode = 200
update_target_network_every = 100
# 创建经验回放存储器
memory = []
# 定义神经网络
class DQN(tf.keras.Model):
def __init__(self, n_actions):
super(DQN, self).__init__()
self.dense1 = tf.keras.layers.Dense(32, activation='relu')
self.dense2 = tf.keras.layers.Dense(32, activation='relu')
self.dense3 = tf.keras.layers.Dense(n_actions)
def call(self, inputs):
x = self.dense1(inputs)
x = self.dense2(x)
x = self.dense3(x)
return x
# 创建主网络和目标网络
n_actions = env.action_space.n
main_network = DQN(n_actions)
target_network = DQN(n_actions)
target_network.set_weights(main_network.get_weights())
# 定义损失函数和优化器
loss_fn = tf.keras.losses.MeanSquaredError()
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
# 定义动作选择策略
def choose_action(state, epsilon):
if np.random.rand() < epsilon:
return env.action_space.sample()
else:
Q_values = main_network(tf.constant([state], dtype=tf.float32)).numpy()[0]
return np.argmax(Q_values)
# 从经验回放存储器中随机采样一个批次进行训练
def train():
batch = np.array(memory)[np.random.choice(len(memory), batch_size, replace=False)]
states = np.array([b[0] for b in batch])
actions = np.array([b[1] for b in batch])
rewards = np.array([b[2] for b in batch])
next_states = np.array([b[3] for b in batch])
dones = np.array([b[4] for b in batch])
Q_values_next = target_network(next_states).numpy()
Q_values_target = rewards + discount_factor * np.max(Q_values_next, axis=1) * (1 - dones)
Q_values = main_network(states).numpy()
Q_values[np.arange(batch_size), actions] = Q_values_target
with tf.GradientTape() as tape:
loss = loss_fn(Q_values, main_network(states))
grads = tape.gradient(loss, main_network.trainable_variables)
optimizer.apply_gradients(zip(grads, main_network.trainable_variables))
# 训练主网络
total_reward_history = []
for episode in range(n_episodes):
state = env.reset()
total_reward = 0
for step in range(n_steps_per_episode):
epsilon = max(epsilon * epsilon_decay, min_epsilon)
action = choose_action(state, epsilon)
next_state, reward, done, _ = env.step(action)
memory.append((state, action, reward, next_state, done))
total_reward += reward
state = next_state
if len(memory) > memory_size:
memory.pop(0)
if episode % update_target_network_every == 0:
target_network.set_weights(main_network.get_weights())
if done:
break
if len(memory) > batch_size:
train()
total_reward_history.append(total_reward)
print(f'Episode {episode} completed with total reward of {total_reward}.')
```
juypter 运行Cartpole-v1游戏中 训练测试DQN强化学习算法的完整代码
在使用Jupyter Notebook运行CartPole-v1游戏中的深度Q网络(Deep Q-Network,DQN)强化学习算法,首先需要安装必要的库,如`gym`, `tensorflow`, `keras`, 和 `matplotlib`等。由于这是一个复杂的示例,以下是简化的步骤和关键代码片段:
1. 导入所需库:
```python
import gym
import tensorflow as tf
from tensorflow.keras import layers
import numpy as np
import matplotlib.pyplot as plt
```
2. 创建环境并观察状态空间和动作空间:
```python
env = gym.make('CartPole-v1')
obs_shape = env.observation_space.shape
n_actions = env.action_space.n
```
3. 定义DQN模型:
```python
model = tf.keras.Sequential([
layers.Dense(64, activation='relu', input_shape=obs_shape),
layers.Dense(64, activation='relu'),
layers.Dense(n_actions)
])
```
4. 创建优化器、损失函数和回调(如记忆回放缓冲区和目标网络更新):
```python
optimizer = tf.keras.optimizers.Adam()
loss_fn = tf.keras.losses.Huber(reduction='none')
# Memory buffer and target network (for experience replay and periodic updates)
memory = []
target_update_freq = 100
target_model = tf.keras.models.clone_model(model)
target_model.set_weights(model.get_weights())
```
5. 主训练循环(包含体验收集、学习、绘图等部分):
```python
def train_step(state, action, reward, next_state, done):
# ... (将经历添加到内存缓冲区并采样经验进行学习)
def run_episode():
# ... (获取初始状态,执行动作,存储经验和奖励,直到达到最大步数或游戏结束)
def main_loop(num_episodes, max_steps_per_episode):
for episode in range(num_episodes):
state = env.reset()
for t in range(max_steps_per_episode):
# ... (获取行动,执行并记录数据,训练模型,然后移动到下一个状态)
if done:
break
# ... (绘制训练进度图表)
if __name__ == "__main__":
main_loop(num_episodes=1000, max_steps_per_episode=500)
```
完整的代码会比较长,包含了记忆管理、探索策略(比如ε-greedy)、经验回放以及定期更新目标网络等功能。实际编写过程中,你需要结合这些步骤,并参考相关的深度强化学习教程或GitHub上的代码示例。
阅读全文