dqn算法matlab代码
时间: 2023-08-04 17:03:31 浏览: 187
以下是DQN算法的Matlab代码,用于实现深度强化学习的智能体训练:
```matlab
% DQN Algorithm
% Initialize replay memory D
D = [];
% Initialize Q-network with random weights
Q = randn(inputSize, numActions);
% Initialize target Q-network with same weights as Q-network
QTarget = Q;
% Initialize action selection parameters
epsilon = 1; % exploration rate
minEpsilon = 0.1; % minimum exploration rate
epsilonDecayRate = 0.0001; % exploration rate decay rate
% Initialize other hyperparameters
batchSize = 32; % minibatch size
gamma = 0.99; % discount factor
maxSteps = 10000; % maximum number of steps per episode
% Start training
for episode = 1:numEpisodes
% Initialize state
state = env.reset();
% Initialize episode variables
totalReward = 0;
step = 0;
% Loop over steps in episode
while step < maxSteps
% Choose action according to epsilon-greedy policy
if rand() < epsilon
action = randi(numActions);
else
[~, action] = max(Q(state,:));
end
% Take action and observe next state and reward
[nextState, reward, done] = env.step(action);
% Store transition in replay memory
D = [D; state, action, reward, nextState, done];
% Update state and total reward
state = nextState;
totalReward = totalReward + reward;
% Sample minibatch from replay memory
minibatch = D(randi(size(D,1),batchSize,1),:);
% Compute target Q-values
targetQ = minibatch(:,3) + gamma*max(QTarget(minibatch(:,4),:),[],2).*(~minibatch(:,5));
% Compute predicted Q-values
predictedQ = Q(minibatch(:,1),minibatch(:,2));
% Compute loss and update Q-network
loss = mean((targetQ - predictedQ).^2);
Q(minibatch(:,1),minibatch(:,2)) = Q(minibatch(:,1),minibatch(:,2)) + alpha*(targetQ - predictedQ);
% Update target Q-network every C steps
if mod(step,C) == 0
QTarget = Q;
end
% Decay exploration rate
epsilon = max(minEpsilon, epsilon - epsilonDecayRate);
% Check if episode is done
if done
break;
end
% Increment step counter
step = step + 1;
end
% Print episode statistics
fprintf('Episode %d: total reward = %.2f, epsilon = %.2f\n', episode, totalReward, epsilon);
end
```
请注意,这只是一个示例代码,您需要根据您自己的环境和要解决的问题进行适当修改。
阅读全文