resnet50 avgpool 层
时间: 2023-09-11 19:06:03 浏览: 248
ResNet50是一种深度卷积神经网络,其中包含多个残差块。每个残差块中包含多个卷积层和批量归一化层,其中某些残差块还包含池化层。在ResNet50的最后一层,在全局平均池化层(Global Average Pooling,简称GAP)之前,通常会添加一个平均池化层(AvgPool),以进一步降维并减少计算量。AvgPool层的作用是将每个卷积层输出的特征图进行平均池化,得到一个固定大小的特征向量,这个向量包含了原始图像的所有信息,并且可以用于分类或其他任务。
相关问题
ResNet50网络层设置
### 配置ResNet50神经网络各层参数及结构
#### 定义基本模块
构建ResNet50的核心在于定义卷积块和瓶颈块。这些基础组件构成了整个网络的主要部分。
对于标准的卷积块,通常会包含三个连续的卷积操作,其中第一个用于降采样:
```python
import torch.nn as nn
class ConvBlock(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, downsample=None):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
```
#### 构建整体架构
通过堆叠上述定义的基础模块来形成完整的ResNet50模型。这里需要注意的是,在不同阶段之间可能需要调整通道数或空间尺寸,这可以通过`downsample`参数实现。
```python
def make_layer(block, in_channels, channels, blocks, stride=1):
layers = []
# First block may need to adjust dimensions via downsampling.
downsample = None
if stride != 1 or in_channels != channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(in_channels, channels * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(channels * block.expansion))
layers.append(block(in_channels, channels, stride, downsample))
# Subsequent blocks do not change dimensionality.
for _ in range(1, blocks):
layers.append(block(channels * block.expansion, channels))
return nn.Sequential(*layers)
class ResNet50(nn.Module):
def __init__(self, num_classes=1000):
super().__init__()
self.in_channels = 64
# Initial convolutional layer before entering the main stages of ResNet50.
self.init_conv = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
# Define four major stages with varying numbers of blocks and strides.
self.layer1 = make_layer(ConvBlock, 64, 64, 3, stride=1)
self.layer2 = make_layer(ConvBlock, 256, 128, 4, stride=2)
self.layer3 = make_layer(ConvBlock, 512, 256, 6, stride=2)
self.layer4 = make_layer(ConvBlock, 1024, 512, 3, stride=2)
# Final fully connected layer for classification task.
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
def run(self, x):
x = self.init_conv(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
```
此代码片段展示了如何创建一个简单的PyTorch版本的ResNet50模型[^1]。注意这里的`ConvBlock`实现了所谓的“bottleneck”设计模式,它有助于减少计算量并提高效率。
resnet50pytorch实现
在PyTorch中实现ResNet50网络,您需要执行以下步骤:
1. 安装PyTorch和相关依赖包。
2. 导入所需的库,包括PyTorch的nn库和torchvision库中的models子库。
3. 定义ResNet50网络的基本块,这些块将用于构建整个网络。
4. 定义ResNet50网络的主要部分,包括输入层、残差块和输出层。
5. 初始化ResNet50网络并进行前向传播。
具体实现可以参考以下代码:
```
import torch
import torch.nn as nn
import torchvision.models as models
# 定义ResNet50网络的基本块
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = nn.ReLU()(out)
return out
# 定义ResNet50网络的主要部分
class ResNet50(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet50, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(BasicBlock, 64, 3, stride=1)
self.layer2 = self._make_layer(BasicBlock, 128, 4, stride=2)
self.layer3 = self._make_layer(BasicBlock, 256, 6, stride=2)
self.layer4 = self._make_layer(BasicBlock, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * BasicBlock.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
您可以使用上述代码来初始化ResNet50网络并进行前向传播。如果您想要使用CIFAR-10数据集进行训练和测试,可以参考上述代码中的用法部分。
阅读全文