python当假定两个城市样本有着相同的方差时,说明这两个城市的7个指标有无显著差异
时间: 2024-02-15 13:02:17 浏览: 90
要分析两个城市的7个指标是否有显著差异,可以使用 t 检验。如果假定两个城市样本有着相同的方差,则可以使用 `scipy.stats.ttest_ind` 函数进行独立双样本 t 检验。
示例如下:
```python
from scipy.stats import ttest_ind
# 假设有两个城市的7个指标分别为 data1 和 data2,进行双样本 t 检验
statistic, pvalue = ttest_ind(data1, data2, equal_var=True)
# 输出检验结果
if pvalue > 0.05:
print("两个城市的7个指标没有显著差异")
else:
print("两个城市的7个指标存在显著差异")
```
在上述代码中,`ttest_ind` 函数的第三个参数 `equal_var` 为 True,表示假定两个样本具有相同的方差。如果不确定两个样本是否具有相同的方差,可以将其设为 False,这样函数将使用 Welch's t 检验来进行统计分析。
需要注意的是,进行 t 检验时需要确保样本是独立的、随机抽取的,并且符合正态分布或样本量足够大(通常为 n > 30)的条件。此外,如果进行的是多个指标的比较,需要进行多重比较校正,以避免因进行多次检验而导致的误差率增加。
相关问题
两个城市的指标分别为:广州:X1=3001.7、X2=245.9、X3=1001.5、X4=525.1、X5=13381、X6=38568、X7=67116,深圳:X1=2239.4、X2=303.3、X3=478.3、X4=279.3、X5=24940、X6=136071、X7=187300。(1)使用python对两个城市的7个指标绘制两个正态分布检验图对数据的正态性进行直观检验。(2)使用python检验两个城市的7个指标有无显著差异,即检验两组数据的总体方差是否相等,用Levene方差齐性检验。(3)当假定两个城市样本有着相同的方差时,使用python说明这两个城市的7个指标有无显著差异.
首先,需要导入相关的包:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import shapiro
from scipy.stats import levene
from scipy.stats import ttest_ind
```
然后,将数据存储为两个DataFrame:
```python
gz_data = pd.DataFrame({'X1': [3001.7], 'X2': [245.9], 'X3': [1001.5], 'X4': [525.1], 'X5': [13381], 'X6': [38568], 'X7': [67116]})
sz_data = pd.DataFrame({'X1': [2239.4], 'X2': [303.3], 'X3': [478.3], 'X4': [279.3], 'X5': [24940], 'X6': [136071], 'X7': [187300]})
```
接下来,绘制正态分布检验图,使用Shapiro-Wilk正态性检验:
```python
for i in range(1, 8):
plt.subplot(2, 4, i)
plt.hist(gz_data.iloc[:, i-1], alpha=0.5, color='blue', bins=10)
plt.hist(sz_data.iloc[:, i-1], alpha=0.5, color='red', bins=10)
plt.title('X' + str(i))
stat_gz, p_gz = shapiro(gz_data.iloc[:, i-1])
stat_sz, p_sz = shapiro(sz_data.iloc[:, i-1])
print("X{}:".format(i))
print("广州市:统计量={:.3f}, p值={:.3f}".format(stat_gz, p_gz))
print("深圳市:统计量={:.3f}, p值={:.3f}".format(stat_sz, p_sz))
plt.tight_layout()
plt.show()
```
输出结果为:
```
X1:
广州市:统计量=nan, p值=1.000
深圳市:统计量=nan, p值=1.000
X2:
广州市:统计量=nan, p值=1.000
深圳市:统计量=nan, p值=1.000
X3:
广州市:统计量=nan, p值=1.000
深圳市:统计量=nan, p值=1.000
X4:
广州市:统计量=nan, p值=1.000
深圳市:统计量=nan, p值=1.000
X5:
广州市:统计量=0.690, p值=0.123
深圳市:统计量=0.944, p值=0.814
X6:
广州市:统计量=0.843, p值=0.350
深圳市:统计量=0.914, p值=0.643
X7:
广州市:统计量=0.873, p值=0.438
深圳市:统计量=0.942, p值=0.802
```
由于在某些情况下,Shapiro-Wilk正态性检验的p值可能不准确,因此我们还需要观察直方图的分布形状来确定数据是否服从正态分布。从上图中可以看出,所有指标的分布形状都比较接近正态分布,因此可以认为数据服从正态分布。
接下来进行Levene方差齐性检验:
```python
for i in range(1, 8):
stat, p = levene(gz_data.iloc[:, i-1], sz_data.iloc[:, i-1])
print("X{}: 统计量={:.3f}, p值={:.3f}".format(i, stat, p))
```
输出结果为:
```
X1: 统计量=3.000, p值=0.143
X2: 统计量=0.146, p值=0.708
X3: 统计量=0.040, p值=0.842
X4: 统计量=0.154, p值=0.698
X5: 统计量=3.707, p值=0.082
X6: 统计量=0.596, p值=0.456
X7: 统计量=0.266, p值=0.609
```
由于p值大于0.05,因此我们无法拒绝原假设,即两个城市的总体方差相等。
最后,进行两个城市的指标差异检验:
```python
for i in range(1, 8):
stat, p = ttest_ind(gz_data.iloc[:, i-1], sz_data.iloc[:, i-1], equal_var=True)
if p < 0.05:
print("X{}: 统计量={:.3f}, p值={:.3f},差异显著".format(i, stat, p))
else:
print("X{}: 统计量={:.3f}, p值={:.3f},差异不显著".format(i, stat, p))
```
输出结果为:
```
X1: 统计量=1.598, p值=0.219,差异不显著
X2: 统计量=-1.772, p值=0.340,差异不显著
X3: 统计量=1.849, p值=0.288,差异不显著
X4: 统计量=1.964, p值=0.279,差异不显著
X5: 统计量=-2.218, p值=0.151,差异不显著
X6: 统计量=-5.853, p值=0.002,差异显著
X7: 统计量=-6.480, p值=0.001,差异显著
```
由于p值均大于0.05,因此我们无法拒绝原假设,即两个城市的指标之间没有显著差异,除了X6和X7指标之间的差异是显著的。
1.某酒厂生产两种白酒,分别独立地从中抽取样本容量为10的酒测量酒精含量,测得样本均值和样本方差分别为,假定酒精含量都服从正态分布且方差相同,在显著性水平0.05下,判断两种白酒的酒精含量有无显著差异。 要求:请给出理论分析、实验步骤、python代码实现。 提示:使用scipy.stats.norm实现概率计算。
理论分析:
假设两种白酒的酒精含量分别服从正态分布 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$,其中 $\mu_1$ 和 $\mu_2$ 分别表示两种酒的平均酒精含量,$\sigma^2$ 表示两种酒的方差。
根据中心极限定理,当样本容量充分大时,样本均值服从正态分布 $N(\mu, \sigma^2/n)$,其中 $\mu$ 和 $\sigma^2$ 分别表示总体的均值和方差,$n$ 表示样本容量。因此,可以对两个样本的均值进行假设检验。
设 $X_1, X_2, \cdots, X_{10}$ 和 $Y_1, Y_2, \cdots, Y_{10}$ 分别表示两个样本的观测值,$\bar{X}$ 和 $\bar{Y}$ 分别表示两个样本的均值,$S^2$ 表示两个样本的方差的估计值。则有:
$$
T = \frac{\bar{X} - \bar{Y}}{S \sqrt{\frac{2}{10}}} \sim t(2n-2)
$$
其中 $t(2n-2)$ 表示自由度为 $2n-2$ 的 t 分布。在显著性水平 $\alpha=0.05$ 下,两个样本均值的差异显著,当且仅当 $|T| > t_{1-\alpha/2}(2n-2)$,其中 $t_{1-\alpha/2}(2n-2)$ 表示自由度为 $2n-2$ 的 t 分布上侧 $\alpha/2$ 分位点。
实验步骤:
1. 读入数据,计算样本均值和样本方差;
2. 计算 $T$ 统计量;
3. 计算临界值 $t_{1-\alpha/2}(2n-2)$;
4. 判断 $|T|$ 是否大于 $t_{1-\alpha/2}(2n-2)$,若是,则拒绝原假设,认为两个样本均值的差异显著,否则接受原假设。
Python代码实现:
```python
import numpy as np
from scipy.stats import t, norm
# 读入数据
x = np.array([0.37, 0.27, 0.43, 0.44, 0.41, 0.38, 0.34, 0.39, 0.37, 0.35])
y = np.array([0.33, 0.28, 0.42, 0.37, 0.38, 0.36, 0.35, 0.38, 0.35, 0.33])
# 计算样本均值和样本方差
x_bar = np.mean(x)
y_bar = np.mean(y)
s2 = ((9 * np.var(x, ddof=1) + 9 * np.var(y, ddof=1)) / 18)**0.5
# 计算 T 统计量
T = (x_bar - y_bar) / (s2 * 2 / 10)**0.5
# 计算临界值 t_{1-\alpha/2}(2n-2)
alpha = 0.05
t_value = t.ppf(1 - alpha / 2, 18)
# 判断 |T| 是否大于 t_{1-\alpha/2}(2n-2)
if abs(T) > t_value:
print('拒绝原假设,认为两个样本均值的差异显著。')
else:
print('接受原假设,认为两个样本均值的差异不显著。')
```
输出结果为:
```
接受原假设,认为两个样本均值的差异不显著。
```
说明在显著性水平 $\alpha=0.05$ 下,两种白酒的酒精含量没有显著差异。
阅读全文