loss函数曲线对比曲线代码

时间: 2023-09-28 10:07:34 浏览: 43
以下是一个简单的示例代码,比较两个模型在训练过程中的loss曲线: ```python import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt # 定义模型1 class Model1(nn.Module): def __init__(self): super(Model1, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.fc2(x) return x # 定义模型2 class Model2(nn.Module): def __init__(self): super(Model2, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.fc2(x) return x # 定义训练函数 def train(model, optimizer, criterion): losses = [] for epoch in range(num_epochs): running_loss = 0.0 for inputs, labels in data_loader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() epoch_loss = running_loss / len(data_loader) losses.append(epoch_loss) print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, epoch_loss)) return losses # 定义数据集和数据加载器 data = torch.randn(100, 10) labels = torch.randn(100, 1) dataset = torch.utils.data.TensorDataset(data, labels) data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True) # 定义超参数 num_epochs = 50 learning_rate = 0.1 # 初始化两个模型和优化器 model1 = Model1() model2 = Model2() optimizer1 = optim.SGD(model1.parameters(), lr=learning_rate) optimizer2 = optim.SGD(model2.parameters(), lr=learning_rate) criterion = nn.MSELoss() # 分别训练两个模型 losses1 = train(model1, optimizer1, criterion) losses2 = train(model2, optimizer2, criterion) # 绘制loss曲线 plt.plot(losses1, label='Model1') plt.plot(losses2, label='Model2') plt.legend() plt.title('Training Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() ``` 运行以上代码,可以得到两个模型在训练过程中的loss曲线对比图。

相关推荐

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from pyswarm import pso import matplotlib.pyplot as plt file = "zhong.xlsx" data = pd.read_excel(file) #reading file X=np.array(data.loc[:,'种植密度':'有效积温']) y=np.array(data.loc[:,'产量']) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=42) # 定义BP神经网络模型 def nn_model(X): model = Sequential() model.add(Dense(X[0], input_dim=X_train.shape[1], activation='relu')) model.add(Dense(X[1], activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model # 定义适应度函数 def fitness_func(X): model = nn_model(X) model.fit(X_train, y_train, epochs=100, verbose=0) score = model.evaluate(X_test, y_test, verbose=0) return score # 定义变量的下限和上限 lb = [5, 5] ub = [20, 20] # 利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型 result = pso(fitness_func, lb, ub) # 输出最优解和函数值 print('最优解:', result[0]) print('最小函数值:', result[1]) # 绘制预测值和真实值对比图 model = nn_model(result[0]) model.fit(X_train, y_train, epochs=100, verbose=0) y_pred = model.predict(X_test) plt.plot(y_test, y_pred, 'o') plt.xlabel('True values') plt.ylabel('Predictions') plt.show() # 绘制损失函数曲线图 model = nn_model(result[0]) history = model.fit(X_train, y_train, epochs=100, validation_data=(X_test, y_test), verbose=0) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.show()

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from pyswarm import pso import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler file = "zhong.xlsx" data = pd.read_excel(file) #reading file X=np.array(data.loc[:,'种植密度':'有效积温']) y=np.array(data.loc[:,'产量']) y.shape=(185,1) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, random_state=10) SC=StandardScaler() X_train=SC.fit_transform(X_train) X_test=SC.fit_transform(X_test) y_train=SC.fit_transform(y_train) y_test=SC.fit_transform(y_test) print("X_train.shape:", X_train.shape) print("X_test.shape:", X_test.shape) print("y_train.shape:", y_train.shape) print("y_test.shape:", y_test.shape) # 定义BP神经网络模型 def nn_model(X): model = Sequential() model.add(Dense(8, input_dim=X_train.shape[1], activation='relu')) model.add(Dense(12, activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model # 定义适应度函数 def fitness_func(X): model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) score = model.evaluate(X_test, y_test, verbose=2) return score # 定义变量的下限和上限 lb = [5, 5] ub = [30, 30] # 利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型 result = pso(fitness_func, lb, ub) # 输出最优解和函数值 print('最优解:', result[0]) print('最小函数值:', result[1]) # 绘制预测值和真实值对比图 model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=0) y_pred = model.predict(X_test) y_true = SC.inverse_transform(y_test) y_pred=SC.inverse_transform(y_pred) plt.figure() plt.plot(y_true,"bo-",label = '真实值') plt.plot(y_pred,"ro-", label = '预测值') plt.title('神经网络预测展示') plt.xlabel('序号') plt.ylabel('产量') plt.legend(loc='upper right') plt.show() # 绘制损失函数曲线图 model = nn_model(X) history = model.fit(X_train, y_train, epochs=60, validation_data=(X_test, y_test), verbose=2) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.show()

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from pyswarm import pso import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score file = "zhong.xlsx" data = pd.read_excel(file) #reading file X=np.array(data.loc[:,'种植密度':'有效积温']) y=np.array(data.loc[:,'产量']) y.shape=(185,1) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, random_state=10) SC=StandardScaler() X_train=SC.fit_transform(X_train) X_test=SC.fit_transform(X_test) y_train=SC.fit_transform(y_train) y_test=SC.fit_transform(y_test) print("X_train.shape:", X_train.shape) print("X_test.shape:", X_test.shape) print("y_train.shape:", y_train.shape) print("y_test.shape:", y_test.shape) # 定义BP神经网络模型 def nn_model(X): model = Sequential() model.add(Dense(8, input_dim=X_train.shape[1], activation='relu')) model.add(Dense(12, activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model # 定义适应度函数 def fitness_func(X): model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) score = model.evaluate(X_test, y_test, verbose=2) print(score) # 定义变量的下限和上限 lb = [5, 5] ub = [30, 30] # 利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型 result = pso(fitness_func, lb, ub) # 输出最优解和函数值 print('最优解:', result[0]) print('最小函数值:', result[1]) mpl.rcParams["font.family"] = "SimHei" mpl.rcParams["axes.unicode_minus"] = False # 绘制预测值和真实值对比图 model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) y_pred = model.predict(X_test) y_true = SC.inverse_transform(y_test) y_pred=SC.inverse_transform(y_pred) plt.figure() plt.plot(y_true,"bo-",label = '真实值') plt.plot(y_pred,"ro-", label = '预测值') plt.title('神经网络预测展示') plt.xlabel('序号') plt.ylabel('产量') plt.legend(loc='upper right') plt.show() print("R2 = ",r2_score(y_test, y_pred)) # R2 # 绘制损失函数曲线图 model = nn_model(X) history = model.fit(X_train, y_train, epochs=60, validation_data=(X_test, y_test), verbose=2) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.show() mae = mean_absolute_error(y_test, y_pred) print('MAE: %.3f' % mae) mse = mean_squared_error(y_test, y_pred) print('mse: %.3f' % mse)

最新推荐

recommend-type

keras绘制acc和loss曲线图实例

主要介绍了keras绘制acc和loss曲线图实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

在tensorflow下利用plt画论文中loss,acc等曲线图实例

主要介绍了在tensorflow下利用plt画论文中loss,acc等曲线图实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch 的损失函数Loss function使用详解

今天小编就为大家分享一篇Pytorch 的损失函数Loss function使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

keras 自定义loss损失函数,sample在loss上的加权和metric详解

主要介绍了keras 自定义loss损失函数,sample在loss上的加权和metric详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Keras之自定义损失(loss)函数用法说明

主要介绍了Keras之自定义损失(loss)函数用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。