c++语言编程模拟实现进程调度算法(高响应比优先调度算法)(1)设计一个具有6个并发进程的进程调度程序,时间片自行设定。每个进程用一个进程控制块(PCB)表示。进程控制块一般包含下列信息:进程名,进程到达时间、进程要求服务的时间、进程优先级数、占用CPU的时间以及进程的状态、本次调度的响应比等。具体参数可以根据调度算法的不同进行增删。 (2)每次进行调度时,调度程序应采用高响应比优先算法进行调度。运行时,应能显示和打印:各个进程的PID,状态(运行态“R”、等待态“W”等)和参数(已运行时间/还需运行的时间 等)的变化情况,便于观察进程的调度过程。 (4)所有进程结束后,要打印输出各进程的执行次序,各进程的完成时间,各进程的周转时间及带权周转时间等参数指标,最后必须计算平均周转时间和平均带权周转时间。

时间: 2023-12-03 20:44:22 浏览: 75
这是一个比较复杂的问题,需要实现一个完整的进程调度系统。以下是一个简单的伪代码实现,供参考: ``` #include <iostream> #include <vector> #include <algorithm> using namespace std; // 进程状态 enum ProcessState { READY, RUNNING, WAITING, FINISHED }; // 进程控制块 struct PCB { string name; // 进程名 int arrival_time; // 到达时间 int service_time; // 要求服务的时间 int priority; // 优先级数 int cpu_time; // 占用CPU的时间 ProcessState state; // 进程状态 double response_ratio; // 响应比 }; // 进程调度器 class Scheduler { public: Scheduler(int time_slice) : time_slice_(time_slice) {} // 添加进程 void add_process(const PCB& process) { processes_.push_back(process); } // 调度进程 void schedule() { int current_time = 0; int finished_count = 0; while (finished_count < processes_.size()) { // 更新进程响应比 update_response_ratio(current_time); // 选择响应比最高的进程 int next_process_index = select_next_process(); // 执行进程 PCB& next_process = processes_[next_process_index]; next_process.state = RUNNING; next_process.cpu_time += min(time_slice_, next_process.service_time - next_process.cpu_time); current_time += time_slice_; // 根据执行结果更新进程状态 if (next_process.cpu_time < next_process.service_time) { next_process.state = READY; } else { next_process.state = FINISHED; next_process.finish_time = current_time; finished_count++; } // 输出进程状态 print_processes(current_time); } // 输出统计结果 print_statistics(); } private: // 更新进程响应比 void update_response_ratio(int current_time) { for (PCB& process : processes_) { if (process.state == READY) { process.response_ratio = 1.0 + (current_time - process.arrival_time + process.service_time) / process.service_time; } } } // 选择响应比最高的进程 int select_next_process() { int next_process_index = -1; double max_response_ratio = -1.0; for (int i = 0; i < processes_.size(); i++) { if (processes_[i].state == READY && processes_[i].response_ratio > max_response_ratio) { next_process_index = i; max_response_ratio = processes_[i].response_ratio; } } return next_process_index; } // 输出所有进程状态 void print_processes(int current_time) { cout << "Time: " << current_time << endl; for (const PCB& process : processes_) { cout << process.name << " "; switch(process.state) { case READY: cout << "R "; break; case RUNNING: cout << "E "; break; case WAITING: cout << "W "; break; case FINISHED: cout << "F "; break; } cout << process.cpu_time << "/" << process.service_time << " "; cout << endl; } cout << endl; } // 输出统计结果 void print_statistics() { sort(processes_.begin(), processes_.end(), [](const PCB& p1, const PCB& p2) { return p1.finish_time < p2.finish_time; }); double total_turnaround_time = 0.0; double total_weighted_turnaround_time = 0.0; cout << "Execution order: "; for (const PCB& process : processes_) { cout << process.name << " "; total_turnaround_time += process.finish_time - process.arrival_time; total_weighted_turnaround_time += (process.finish_time - process.arrival_time) / (double)process.service_time; } cout << endl; cout << "Average turnaround time: " << total_turnaround_time / processes_.size() << endl; cout << "Average weighted turnaround time: " << total_weighted_turnaround_time / processes_.size() << endl; } private: int time_slice_; vector<PCB> processes_; }; int main() { Scheduler scheduler(2); // 时间片为2 // 添加进程 scheduler.add_process({"A", 0, 8, 3, 0, READY, 0.0}); scheduler.add_process({"B", 1, 4, 1, 0, READY, 0.0}); scheduler.add_process({"C", 2, 9, 3, 0, READY, 0.0}); scheduler.add_process({"D", 3, 5, 2, 0, READY, 0.0}); scheduler.add_process({"E", 4, 2, 1, 0, READY, 0.0}); scheduler.add_process({"F", 5, 7, 2, 0, READY, 0.0}); // 调度进程 scheduler.schedule(); return 0; } ``` 以上代码是一个简单的 C++ 实现,仅供参考。在实际编写中,需要根据具体需求进行修改和完善。
阅读全文

相关推荐

最新推荐

recommend-type

进程调度算法__操作系统课程设计

在这个课程设计中,重点是通过模拟优先权法的进程调度算法来理解和掌握进程管理的基本概念和操作。 首先,进程是操作系统中执行程序的实例,每个进程都有一个唯一的标识符(ID),在本设计中,0表示闲逛进程,而...
recommend-type

操作系统实验报告进程调度

操作系统实验报告——进程调度 本实验报告主要围绕操作系统中的进程调度进行探讨,特别是通过解决生产者和消费者问题来深入理解进程调度的原理和方法。实验的目的在于让参与者掌握基本的同步互斥算法,理解生产者-...
recommend-type

银行家算法课程设计通过优先权法与轮转调度算法的模拟加深对进程概念和进程调度过程的理解,掌握进程状态之间的切换,同时掌握进程调度算法的实现方法和技巧。

在这个课程设计中,史文峰同学使用C或C++编程语言实现了一个模拟系统,该系统包含优先级调度算法。每个进程都有一个优先级,优先级高的进程更有可能获得资源。0被设为闲逛进程的优先级,用户进程的优先级随机生成,...
recommend-type

用队列模拟操作系统中的进程调度(数据结构C)

在实验中,所有进程被放入一个队列中,每次调度会取出一个进程执行一个时间片。如果进程在时间片结束前完成,它会被从内存中移除;否则,它的剩余时间片数减一,然后被放回队列末尾等待下一次调度。时间片轮转法确保...
recommend-type

postgresql-16.6.tar.gz

postgresql-16.6.tar.gz,PostgreSQL 安装包。 PostgreSQL是一种特性非常齐全的自由软件的对象-关系型数据库管理系统(ORDBMS),是以加州大学计算机系开发的POSTGRES,4.2版本为基础的对象关系型数据库管理系统。POSTGRES的许多领先概念只是在比较迟的时候才出现在商业网站数据库中。PostgreSQL支持大部分的SQL标准并且提供了很多其他现代特性,如复杂查询、外键、触发器、视图、事务完整性、多版本并发控制等。同样,PostgreSQL也可以用许多方法扩展,例如通过增加新的数据类型、函数、操作符、聚集函数、索引方法、过程语言等。另外,因为许可证的灵活,任何人都可以以任何目的免费使用、修改和分发PostgreSQL。
recommend-type

GitHub Classroom 创建的C语言双链表实验项目解析

资源摘要信息: "list_lab2-AquilesDiosT"是一个由GitHub Classroom创建的实验项目,该项目涉及到数据结构中链表的实现,特别是双链表(doble lista)的编程练习。实验的目标是通过编写C语言代码,实现一个双链表的数据结构,并通过编写对应的测试代码来验证实现的正确性。下面将详细介绍标题和描述中提及的知识点以及相关的C语言编程概念。 ### 知识点一:GitHub Classroom的使用 - **GitHub Classroom** 是一个教育工具,旨在帮助教师和学生通过GitHub管理作业和项目。它允许教师创建作业模板,自动为学生创建仓库,并提供了一个清晰的结构来提交和批改学生作业。在这个实验中,"list_lab2-AquilesDiosT"是由GitHub Classroom创建的项目。 ### 知识点二:实验室参数解析器和代码清单 - 实验参数解析器可能是指实验室中用于管理不同实验配置和参数设置的工具或脚本。 - "Antes de Comenzar"(在开始之前)可能是一个实验指南或说明,指示了实验的前提条件或准备工作。 - "实验室实务清单"可能是指实施实验所需遵循的步骤或注意事项列表。 ### 知识点三:C语言编程基础 - **C语言** 作为编程语言,是实验项目的核心,因此在描述中出现了"C"标签。 - **文件操作**:实验要求只可以操作`list.c`和`main.c`文件,这涉及到C语言对文件的操作和管理。 - **函数的调用**:`test`函数的使用意味着需要编写测试代码来验证实验结果。 - **调试技巧**:允许使用`printf`来调试代码,这是C语言程序员常用的一种简单而有效的调试方法。 ### 知识点四:数据结构的实现与应用 - **链表**:在C语言中实现链表需要对结构体(struct)和指针(pointer)有深刻的理解。链表是一种常见的数据结构,链表中的每个节点包含数据部分和指向下一个节点的指针。实验中要求实现的双链表,每个节点除了包含指向下一个节点的指针外,还包含一个指向前一个节点的指针,允许双向遍历。 ### 知识点五:程序结构设计 - **typedef struct Node Node;**:这是一个C语言中定义类型别名的语法,可以使得链表节点的声明更加清晰和简洁。 - **数据结构定义**:在`Node`结构体中,`void * data;`用来存储节点中的数据,而`Node * next;`用来指向下一个节点的地址。`void *`表示可以指向任何类型的数据,这提供了灵活性来存储不同类型的数据。 ### 知识点六:版本控制系统Git的使用 - **不允许使用git**:这是实验的特别要求,可能是为了让学生专注于学习数据结构的实现,而不涉及版本控制系统的使用。在实际工作中,使用Git等版本控制系统是非常重要的技能,它帮助开发者管理项目版本,协作开发等。 ### 知识点七:项目文件结构 - **文件命名**:`list_lab2-AquilesDiosT-main`表明这是实验项目中的主文件。在实际的文件系统中,通常会有多个文件来共同构成一个项目,如源代码文件、头文件和测试文件等。 总结而言,"list_lab2-AquilesDiosT"实验项目要求学生运用C语言编程知识,实现双链表的数据结构,并通过编写测试代码来验证实现的正确性。这个过程不仅考察了学生对C语言和数据结构的掌握程度,同时也涉及了软件开发中的基本调试方法和文件操作技能。虽然实验中禁止了Git的使用,但在现实中,版本控制的技能同样重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【三态RS锁存器CD4043的秘密】:从入门到精通的电路设计指南(附实际应用案例)

# 摘要 三态RS锁存器CD4043是一种具有三态逻辑工作模式的数字电子元件,广泛应用于信号缓冲、存储以及多路数据选择等场合。本文首先介绍了CD4043的基础知识和基本特性,然后深入探讨其工作原理和逻辑行为,紧接着阐述了如何在电路设计中实践运用CD4043,并提供了高级应用技巧和性能优化策略。最后,针对CD4043的故障诊断与排错进行了详细讨论,并通过综合案例分析,指出了设计挑战和未来发展趋势。本文旨在为电子工程师提供全面的CD4043应用指南,同时为相关领域的研究提供参考。 # 关键字 三态RS锁存器;CD4043;电路设计;信号缓冲;故障诊断;微控制器接口 参考资源链接:[CD4043
recommend-type

霍夫曼四元编码matlab

霍夫曼四元码(Huffman Coding)是一种基于频率最优的编码算法,常用于数据压缩中。在MATLAB中,你可以利用内置函数来生成霍夫曼树并创建对应的编码表。以下是简单的步骤: 1. **收集数据**:首先,你需要一个数据集,其中包含每个字符及其出现的频率。 2. **构建霍夫曼树**:使用`huffmandict`函数,输入字符数组和它们的频率,MATLAB会自动构建一棵霍夫曼树。例如: ```matlab char_freq = [freq1, freq2, ...]; % 字符频率向量 huffTree = huffmandict(char_freq);
recommend-type

MATLAB在AWS上的自动化部署与运行指南

资源摘要信息:"AWS上的MATLAB是MathWorks官方提供的参考架构,旨在简化用户在Amazon Web Services (AWS) 上部署和运行MATLAB的流程。该架构能够让用户自动执行创建和配置AWS基础设施的任务,并确保可以在AWS实例上顺利运行MATLAB软件。为了使用这个参考架构,用户需要拥有有效的MATLAB许可证,并且已经在AWS中建立了自己的账户。 具体的参考架构包括了分步指导,架构示意图以及一系列可以在AWS环境中执行的模板和脚本。这些资源为用户提供了详细的步骤说明,指导用户如何一步步设置和配置AWS环境,以便兼容和利用MATLAB的各种功能。这些模板和脚本是自动化的,减少了手动配置的复杂性和出错概率。 MathWorks公司是MATLAB软件的开发者,该公司提供了广泛的技术支持和咨询服务,致力于帮助用户解决在云端使用MATLAB时可能遇到的问题。除了MATLAB,MathWorks还开发了Simulink等其他科学计算软件,与MATLAB紧密集成,提供了模型设计、仿真和分析的功能。 MathWorks对云环境的支持不仅限于AWS,还包括其他公共云平台。用户可以通过访问MathWorks的官方网站了解更多信息,链接为www.mathworks.com/cloud.html#PublicClouds。在这个页面上,MathWorks提供了关于如何在不同云平台上使用MATLAB的详细信息和指导。 在AWS环境中,用户可以通过参考架构自动化的模板和脚本,快速完成以下任务: 1. 创建AWS资源:如EC2实例、EBS存储卷、VPC(虚拟私有云)和子网等。 2. 配置安全组和网络访问控制列表(ACLs),以确保符合安全最佳实践。 3. 安装和配置MATLAB及其相关产品,包括Parallel Computing Toolbox、MATLAB Parallel Server等,以便利用多核处理和集群计算。 4. 集成AWS服务,如Amazon S3用于存储,AWS Batch用于大规模批量处理,Amazon EC2 Spot Instances用于成本效益更高的计算任务。 此外,AWS上的MATLAB架构还包括了监控和日志记录的功能,让用户能够跟踪和分析运行状况,确保应用程序稳定运行。用户还可以根据自己的需求自定义和扩展这些模板和脚本。 在使用AWS上的MATLAB之前,用户需要了解MathWorks的许可协议,明确自己的许可证是否允许在云环境中使用MATLAB,并确保遵守相关法律法规。MathWorks提供了广泛的资源和支持,帮助用户快速上手,有效利用AWS资源,以及在云端部署和扩展MATLAB应用程序。 综上所述,AWS上的MATLAB参考架构是为希望在AWS云平台上部署MATLAB的用户提供的一种快速、简便的解决方案。它不仅减少了手动配置的复杂性,还为用户提供了广泛的资源和指导,以确保用户能够在云环境中高效、安全地使用MATLAB。"