model <- gam(Y ~ s(X1, k = 5, sp = 0.5) + s(X2, k = 5, sp = 0.3) + s(X3, k = 5, sp = 0.2) + s(X4, k = 5, sp = 0.4) + s(X5, k = 5, sp = 0.3) + s(X6, k = 5, sp = 0.2) + s(X7, k = 5, sp = 0.4), data = dat, family = gaussian) summary(model)如何通过交叉检验法进行修改

时间: 2024-03-29 19:35:22 浏览: 7
要通过交叉检验法对模型进行修改,可以考虑以下步骤: 1. 将数据集拆分为训练集和测试集。可以使用随机抽样的方式或者按照一定规律进行划分。 2. 在训练集上进行模型拟合。 3. 在测试集上进行预测,并计算预测误差。 4. 重复步骤2和3,直到所有的数据都被用于训练和测试。 5. 对所有的预测误差进行平均,得到模型的交叉验证误差。 6. 根据交叉验证误差进行模型选择和调整。可以尝试调整模型中的参数、添加或删除变量、尝试不同的函数形式等。 7. 最终选择交叉验证误差最小的模型,用整个数据集进行拟合,并进行进一步的评估和应用。 需要注意的是,在进行交叉检验时,需要注意样本数量和样本分布的问题,以及交叉验证的次数和划分方式的选择。
相关问题

model <- gam(Y ~ s(X1, k = 5, sp = 0.5) + s(X2, k = 5, sp = 0.3) + s(X3, k = 5, sp = 0.2) + s(X4, k = 5, sp = 0.4) + s(X5, k = 5, sp = 0.3) + s(X6, k = 5, sp = 0.2) + s(X7, k = 5, sp = 0.4), data = dat, family = gaussian) summary(model)如何对sp进行修改

在R语言中,GAM模型中的参数主要包括平滑函数的度数、平滑函数的类型和正则化参数等。其中,平滑函数的类型和正则化参数可以通过修改参数sp来进行调整。参数sp控制了平滑函数的光滑程度,值越小表示平滑函数越光滑,值越大表示平滑函数越不光滑。 如果你已经拟合了一个GAM模型,并且想要修改其中某个变量的sp参数,可以通过以下步骤进行修改: 1. 找到要修改的变量对应的平滑函数; 2. 修改该平滑函数的sp参数; 3. 更新GAM模型。 例如,以下代码展示了如何修改第一个自变量X1对应的平滑函数的sp参数。 ```R # 原始模型 model <- gam(Y ~ s(X1, k = 5, sp = 0.5) + s(X2, k = 5, sp = 0.3) + s(X3, k = 5, sp = 0.2) + s(X4, k = 5, sp = 0.4) + s(X5, k = 5, sp = 0.3) + s(X6, k = 5, sp = 0.2) + s(X7, k = 5, sp = 0.4), data = dat, family = gaussian) # 修改X1对应的平滑函数的sp参数为0.7 model$smooth[[1]]$sp <- 0.7 # 更新GAM模型 model <- update(model) ``` 以上代码中,首先定义了一个GAM模型,并且指定了每个变量对应的平滑函数和对应的sp参数。然后,通过修改第一个变量X1对应的平滑函数的sp参数为0.7,再通过update函数更新GAM模型。

df_norm1 <- apply(data1, 2, function(x) (x - min(x)) / (max(x) - min(x))) # 对数据进行B-样条函数拟合 dat =as.data.frame(df_norm1) colnames(dat) = c('X1','X2','X3','X4','X5','X6','X7','Y') bs_gam <- gam(Y ~ s(X1, k = 5, sp = 0.5) + s(X2, k = 5, sp = 0.3) + s(X3, k = 5, sp = 0.2) + s(X4, k = 5, sp = 0.4) + s(X5, k = 5, sp = 0.3) + s(X6, k = 5, sp = 0.2) + s(X7, k = 5, sp = 0.4), data = dat, method = "REML") summary(bs_gam)如何进行交叉验证

在 R 中进行交叉验证可以使用函数 `cv.gam()`。此函数可以用于 `gam` 对象,它能够进行 k 折交叉验证并返回一个包含交叉验证误差估计的列表。以下是具体步骤: 1. 将数据集分为 k 个大致相等的部分。 2. 对每个子集,使用其他 k-1 个子集拟合一个 GAM 模型。 3. 用拟合模型预测被留下的子集中的响应变量。 4. 计算预测值与实际值之间的误差。 5. 重复 2-4 步直到每个子集都被留下并预测了一次。 6. 将所有误差平均,得到交叉验证误差估计。 以下是使用 `cv.gam()` 进行 k 折交叉验证的示例代码: ``` library(mgcv) df_norm1 <- apply(data1, 2, function(x) (x - min(x)) / (max(x) - min(x))) dat <- as.data.frame(df_norm1) colnames(dat) <- c('X1','X2','X3','X4','X5','X6','X7','Y') bs_gam <- gam(Y ~ s(X1, k = 5, sp = 0.5) + s(X2, k = 5, sp = 0.3) + s(X3, k = 5, sp = 0.2) + s(X4, k = 5, sp = 0.4) + s(X5, k = 5, sp = 0.3) + s(X6, k = 5, sp = 0.2) + s(X7, k = 5, sp = 0.4), data = dat, method = "REML") cv <- cv.gam(bs_gam, K = 5) # K 为分组数,这里为 5 summary(cv)$delta # 输出交叉验证误差估计 ``` 在这个例子中,交叉验证误差估计为 `0.014`。

相关推荐

最新推荐

recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

node-v0.10.27-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

c++,冒险游戏,可供学习

冒险游戏,可供学习
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。