python 定义一个数组 accs
时间: 2024-01-25 08:13:08 浏览: 186
以下是定义一个数组`accs`的示例代码:
```python
accs = []
```
这段代码创建了一个空的数组`accs`,可以用来存储一系列的准确率值。你可以根据需要向这个数组中添加元素,例如:
```python
accs.append(0.85)
accs.append(0.92)
```
这样就可以将准确率值0.85和0.92添加到数组`accs`中了。
相关问题
iter1 = iter(accs)
This line of code creates an iterator called "iter1" using the built-in function "iter()" and passing in the list "accs" as an argument. The iterator will allow us to loop over the elements in the list one at a time.
帮我接入飞桨写一个手写字体识别python程序
好的,我可以回答这个问题。以下是一个使用飞桨实现手写数字识别的 Python 程序:
```python
import paddle
import paddle.fluid as fluid
import numpy as np
# 定义网络结构
def convolutional_neural_network(img):
# 第一层卷积层
conv1 = fluid.layers.conv2d(input=img, num_filters=32, filter_size=5, stride=1, padding=2, act='relu')
# 第一层池化层
pool1 = fluid.layers.pool2d(input=conv1, pool_size=2, pool_type='max', pool_stride=2)
# 第二层卷积层
conv2 = fluid.layers.conv2d(input=pool1, num_filters=64, filter_size=5, stride=1, padding=2, act='relu')
# 第二层池化层
pool2 = fluid.layers.pool2d(input=conv2, pool_size=2, pool_type='max', pool_stride=2)
# 第三层卷积层
conv3 = fluid.layers.conv2d(input=pool2, num_filters=64, filter_size=5, stride=1, padding=2, act='relu')
# 第三层池化层
pool3 = fluid.layers.pool2d(input=conv3, pool_size=2, pool_type='max', pool_stride=2)
# 全连接层
fc = fluid.layers.fc(input=pool3, size=512, act='relu')
# 输出层
out = fluid.layers.fc(input=fc, size=10, act='softmax')
return out
# 定义输入数据
image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# 获取网络输出结果
predict = convolutional_neural_network(image)
# 定义损失函数和优化器
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=.001)
opts = optimizer.minimize(avg_cost)
# 定义训练程序
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# 定义数据读取器
train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500), batch_size=128)
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
# 开始训练
for pass_id in range(10):
# 训练
for batch_id, data in enumerate(train_reader()):
train_cost, train_acc = exe.run(program=fluid.default_main_program(),
feed={'image': np.array([x[] for x in data]).astype('float32'),
'label': np.array([x[1] for x in data]).astype('int64')},
fetch_list=[avg_cost, predict])
if batch_id % 100 == :
print("Pass %d, Batch %d, Cost %f, Acc %f" % (pass_id, batch_id, train_cost[], train_acc[]))
# 测试
test_accs = []
test_costs = []
for batch_id, data in enumerate(test_reader()):
test_cost, test_acc = exe.run(program=fluid.default_main_program(),
feed={'image': np.array([x[] for x in data]).astype('float32'),
'label': np.array([x[1] for x in data]).astype('int64')},
fetch_list=[avg_cost, predict])
test_accs.append(test_acc[])
test_costs.append(test_cost[])
test_cost = (sum(test_costs) / len(test_costs))
test_acc = (sum(test_accs) / len(test_accs))
print("Test: Cost %f, Acc %f" % (test_cost, test_acc))
```
这个程序使用了飞桨框架,实现了一个卷积神经网络,用于手写数字识别。训练数据使用了 MNIST 数据集,训练过程中会输出训练和测试的损失和准确率。
阅读全文