advanced engineering mathematics thomas harman

时间: 2024-02-06 08:01:18 浏览: 144
DJVU

Advanced Engineering Mathematics with MATLAB [1st] Thomas L. Harman

《高级工程数学》是由Thomas Harman所撰写的一本教材。该书是为工程专业学生准备的,旨在帮助他们建立数学知识的基础,以应对实际工程中的挑战。 这本教材涵盖了广泛的数学主题,包括复变函数、线性代数、微积分和偏微分方程等。每个主题都从基础知识开始,逐步引入更高级的概念和技术。这种结构使得读者能够高效地学习和理解数学原理。 书中的每个章节都包含了一些例题和习题,旨在帮助学生巩固所学的概念和方法。这些习题涵盖了不同难度级别,从基础的计算题到更复杂的应用题。通过解决这些习题,学生可以提高他们的问题解决能力和数学建模能力。 此外,这本教材还提供了一些实际应用的案例研究,以帮助学生将数学理论与实际工程问题联系起来。这些案例研究涉及到工程中常见的问题,如电路分析、流体力学和结构力学等。通过学习这些案例,学生可以更好地理解数学在实际工程中的应用价值。 总的来说,《高级工程数学》是一本全面而深入的工程数学教材,适合工程专业学生使用。它不仅提供了全面的数学知识,还鼓励学生将数学理论应用于实际工程问题。这本教材对于帮助学生提高数学能力、解决工程问题以及培养创新思维具有重要的意义。
阅读全文

相关推荐

pdf
Review of Prerequisites 3 CHAPTER 1.1 Real Numbers, Mathematical Induction, and Mathematical Conventions 4 1.2 Complex Numbers 10 1.3 The Complex Plane 15 1.4 Modulus and Argument Representation of Complex Numbers 18 1.5 Roots of Complex Numbers 22 1.6 Partial Fractions 27 1.7 Fundamentals of Determinants 31 1.8 Continuity in One or More Variables 35 1.9 Differentiability of Functions of One or More Variables 38 1.10 Tangent Line and Tangent Plane Approximations to Functions 40 1.11 Integrals 41 1.12 Taylor and Maclaurin Theorems 43 1.13 Cylindrical and Spherical Polar Coordinates and Change of Variables in Partial Differentiation 46 1.14 Inverse Functions and the Inverse Function Theorem 49 vii PART TWO VECTORS AND MATRICES 53 2 Vectors and Vector Spaces 55 CHAPTER 2.1 Vectors, Geometry, and Algebra 56 2.2 The Dot Product (Scalar Product) 70 2.3 The Cross Product (Vector Product) 77 2.4 Linear Dependence and Independence of Vectors and Triple Products 82 n 2.5 n-Vectors and the Vector Space R 88 2.6 Linear Independence, Basis, and Dimension 95 2.7 Gram–Schmidt Orthogonalization Process 101 CHAPTER 3 Matrices and Systems of Linear Equations 105 3.1 Matrices 106 3.2 Some Problems That Give Rise to Matrices 120 3.3 Determinants 133 3.4 Elementary Row Operations, Elementary Matrices, and Their Connection with Matrix Multiplication 143 3.5 The Echelon and Row-Reduced Echelon Forms of a Matrix 147 3.6 Row and Column Spaces and Rank 152 3.7 The Solution of Homogeneous Systems of Linear Equations 155 3.8 The Solution of Nonhomogeneous Systems of Linear Equations 158 3.9 The Inverse Matrix 163 3.10 Derivative of a Matrix 171 CHAPTER 4 Eigenvalues, Eigenvectors, and Diagonalization 177 4.1 Characteristic Polynomial, Eigenvalues, and Eigenvectors 178 4.2 Diagonalization of Matrices 196 4.3 Special Matrices with Complex Elements 205 4.4 Quadratic Forms 210 4.5 The Matrix Exponential 215 viii PART THREE ORDINARY DIFFERENTIAL EQUATIONS 225 5 First Order Differential Equations 227 CHAPTER 5.1 Background to Ordinary Differential Equations 228 5.2 Some Problems Leading to Ordinary Differential Equations 233 5.3 Direction Fields 240 5.4 Separable Equations 242 5.5 Homogeneous Equations 247 5.6 Exact Equations 250 5.7 Linear First Order Equations 253 5.8 The Bernoulli Equation 259 5.9 The Riccati Equation 262 5.10 Existence and Uniqueness of Solutions 264 CHAPTER 6 Second and Higher Order Linear Differential Equations and Systems 269 6.1 Homogeneous Linear Constant Coefficient Second Order Equations 270 6.2 Oscillatory Solutions 280 6.3 Homogeneous Linear Higher Order Constant Coefficient Equations 291 6.4 Undetermined Coefficients: Particular Integrals 302 6.5 Cauchy–Euler Equation 309 6.6 Variation of Parameters and the Green’s Function 311 6.7 Finding a Second Linearly Independent Solution from a Known Solution: The Reduction of Order Method 321 6.8 Reduction to the Standard Form u + f(x)u = 0 324 6.9 Systems of Ordinary Differential Equations: An Introduction 326 6.10 A Matrix Approach to Linear Systems of Differential Equations 333 6.11 Nonhomogeneous Systems 338 6.12 Autonomous Systems of Equations 351 ix CHAPTER 7 The Laplace Transform 379 7.1 Laplace Transform: Fundamental Ideas 379 7.2 Operational Properties of the Laplace Transform 390 7.3 Systems of Equations and Applications of the Laplace Transform 415 7.4 The Transfer Function, Control Systems, and Time Lags 437 CHAPTER 8 SeriesSolutionsofDifferentialEquations,Special Functions, and Sturm–Liouville Equations 443 8.1 A First Approach to Power Series Solutions of Differential Equations 443 8.2 A General Approach to Power Series Solutions of Homogeneous Equations 447 8.3 Singular Points of Linear Differential Equations 461 8.4 The Frobenius Method 463 8.5 The Gamma Function Revisited 480 8.6 Bessel Function of the First Kind J (x) 485 n 8.7 Bessel Functions of the Second Kind Y (x) 495 ν 8.8 Modified Bessel Functions I (x) and K (x) 501 ν ν 8.9 A Critical Bending Problem: Is There a Tallest Flagpole? 504 8.10 Sturm–Liouville Problems, Eigenfunctions, and Orthogonality 509 8.11 Eigenfunction Expansions and Completeness 526 PART FOUR FOURIER SERIES, INTEGRALS, AND THE FOURIER TRANSFORM 543 9 Fourier Series 545 CHAPTER 9.1 Introduction to Fourier Series 545 9.2 Convergence of Fourier Series and Their Integration and Differentiation 559 9.3 Fourier Sine and Cosine Series on 0 ≤x ≤L 568 9.4 Other Forms of Fourier Series 572 9.5 Frequency and Amplitude Spectra of a Function 577 9.6 Double Fourier Series 581 x CHAPTER 10 Fourier Integrals and the Fourier Transform 589 10.1 The Fourier Integral 589 10.2 The Fourier Transform 595 10.3 Fourier Cosine and Sine Transforms 611 PART FIVE VECTOR CALCULUS 623 11 Vector Differential Calculus 625 CHAPTER 11.1 Scalar and Vector Fields, Limits, Continuity, and Differentiability 626 11.2 Integration of Scalar and Vector Functions of a Single Real Variable 636 11.3 Directional Derivatives and the Gradient Operator 644 11.4 Conservative Fields and Potential Functions 650 11.5 Divergence and Curl of a Vector 659 11.6 Orthogonal Curvilinear Coordinates 665 CHAPTER 12 Vector Integral Calculus 677 12.1 Background to Vector Integral Theorems 678 12.2 Integral Theorems 680 12.3 Transport Theorems 697 12.4 Fluid Mechanics Applications of Transport Theorems 704 PART SIX COMPLEX ANALYSIS 709 13 Analytic Functions 711 CHAPTER 13.1 Complex Functions and Mappings 711 13.2 Limits, Derivatives, and Analytic Functions 717 13.3 Harmonic Functions and Laplace’s Equation 730 13.4 Elementary Functions, Inverse Functions, and Branches 735 xi CHAPTER 14 Complex Integration 745 14.1 Complex Integrals 745 14.2 Contours, the Cauchy–Goursat Theorem, and Contour Integrals 755 14.3 The Cauchy Integral Formulas 769 14.4 Some Properties of Analytic Functions 775 CHAPTER 15 Laurent Series, Residues, and Contour Integration 791 15.1 Complex Power Series and Taylor Series 791 15.2 Uniform Convergence 811 15.3 Laurent Series and the Classification of Singularities 816 15.4 Residues and the Residue Theorem 830 15.5 Evaluation of Real Integrals by Means of Residues 839 CHAPTER 16 The Laplace Inversion Integral 863 16.1 The Inversion Integral for the Laplace Transform 863 CHAPTER 17 Conformal Mapping and Applications to Boundary Value Problems 877 17.1 Conformal Mapping 877 17.2 Conformal Mapping and Boundary Value Problems 904 PART SEVEN PARTIAL DIFFERENTIAL EQUATIONS 925 18 Partial Differential Equations 927 CHAPTER 18.1 What Is a Partial Differential Equation? 927 18.2 The Method of Characteristics 934 18.3 Wave Propagation and First Order PDEs 942 18.4 Generalizing Solutions: Conservation Laws and Shocks 951 xii 18.5 The Three Fundamental Types of Linear Second Order PDE 956 18.6 Classification and Reduction to Standard Form of a Second Order Constant Coefficient Partial Differential Equation for u(x, y) 964 18.7 Boundary Conditions and Initial Conditions 975 18.8 Waves and the One-Dimensional Wave Equation 978 18.9 The D’Alembert Solution of the Wave Equation and Applications 981 18.10 Separation of Variables 988 18.11 Some General Results for the Heat and Laplace Equation 1025 18.12 An Introduction to Laplace and Fourier Transform Methods for PDEs 1030 PART EIGHT NUMERICAL MATHEMATICS 1043 19 Numerical Mathematics 1045 CHAPTER 19.1 Decimal Places and Significant Figures 1046 19.2 Roots of Nonlinear Functions 1047 19.3 Interpolation and Extrapolation 1058 19.4 Numerical Integration 1065 19.5 Numerical Solution of Linear Systems of Equations 1077 19.6 Eigenvalues and Eigenvectors 1090 19.7 Numerical Solution of Differential Equations 1095 Answers 1109 References 1143 Index 1147

最新推荐

recommend-type

Engineering Mathematics

《工程数学》是一本详尽的数学参考手册,由John Bird撰写,专为工程领域的实践者和学习者设计。本书涵盖了广泛的主题,旨在提供在工程领域工作中常用的数学工具和技术。 第1章“工程转换、常量和符号”介绍了基本的...
recommend-type

mathematics使用教程

"数学运算命令与例题" 本资源是关于数学运算命令与例题的教程,旨在帮助用户快速学会数学运算的基本方法,并应用于基本计算和图形绘制。本教程涵盖了多项式运算命令、函数和例题,旨在帮助用户熟悉数学运算的命令和...
recommend-type

数学建模之mathematics教程详解

《数学建模与Mathematics教程详解》 数学建模,作为一种将抽象的数学理论应用于解决实际问题的方法,已经成为科学研究和教育领域的重要工具。Mathematics,尤其是以Mathematica为代表的数学软件,极大地推动了数学...
recommend-type

数学实验mathematics软件应用

《数学实验mathematics软件应用》是一门针对数学专业本科生的必修课程,旨在培养学生们熟练掌握Mathematica这款强大的数学软件。Mathematica能够进行数值和符号计算,包括积分、级数等各种复杂的数学运算,是现代...
recommend-type

boost-chrono-1.53.0-28.el7.x86_64.rpm.zip

文件放服务器下载,请务必到电脑端资源详情查看然后下载
recommend-type

Angular程序高效加载与展示海量Excel数据技巧

资源摘要信息: "本文将讨论如何在Angular项目中加载和显示Excel海量数据,具体包括使用xlsx.js库读取Excel文件以及采用批量展示方法来处理大量数据。为了更好地理解本文内容,建议参阅关联介绍文章,以获取更多背景信息和详细步骤。" 知识点: 1. Angular框架: Angular是一个由谷歌开发和维护的开源前端框架,它使用TypeScript语言编写,适用于构建动态Web应用。在处理复杂单页面应用(SPA)时,Angular通过其依赖注入、组件和服务的概念提供了一种模块化的方式来组织代码。 2. Excel文件处理: 在Web应用中处理Excel文件通常需要借助第三方库来实现,比如本文提到的xlsx.js库。xlsx.js是一个纯JavaScript编写的库,能够读取和写入Excel文件(包括.xlsx和.xls格式),非常适合在前端应用中处理Excel数据。 3. xlsx.core.min.js: 这是xlsx.js库的一个缩小版本,主要用于生产环境。它包含了读取Excel文件核心功能,适合在对性能和文件大小有要求的项目中使用。通过使用这个库,开发者可以在客户端对Excel文件进行解析并以数据格式暴露给Angular应用。 4. 海量数据展示: 当处理成千上万条数据记录时,传统的方式可能会导致性能问题,比如页面卡顿或加载缓慢。因此,需要采用特定的技术来优化数据展示,例如虚拟滚动(virtual scrolling),分页(pagination)或懒加载(lazy loading)等。 5. 批量展示方法: 为了高效显示海量数据,本文提到的批量展示方法可能涉及将数据分组或分批次加载到视图中。这样可以减少一次性渲染的数据量,从而提升应用的响应速度和用户体验。在Angular中,可以利用指令(directives)和管道(pipes)来实现数据的分批处理和显示。 6. 关联介绍文章: 提供的文章链接为读者提供了更深入的理解和实操步骤。这可能是关于如何配置xlsx.js在Angular项目中使用、如何读取Excel文件中的数据、如何优化和展示这些数据的详细指南。读者应根据该文章所提供的知识和示例代码,来实现上述功能。 7. 文件名称列表: "excel"这一词汇表明,压缩包可能包含一些与Excel文件处理相关的文件或示例代码。这可能包括与xlsx.js集成的Angular组件代码、服务代码或者用于展示数据的模板代码。在实际开发过程中,开发者需要将这些文件或代码片段正确地集成到自己的Angular项目中。 总结而言,本文将指导开发者如何在Angular项目中集成xlsx.js来处理Excel文件的读取,以及如何优化显示大量数据的技术。通过阅读关联介绍文章和实际操作示例代码,开发者可以掌握从后端加载数据、通过xlsx.js解析数据以及在前端高效展示数据的技术要点。这对于开发涉及复杂数据交互的Web应用尤为重要,特别是在需要处理大量数据时。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南

![【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南](https://www.vandyke.com/images/screenshots/securecrt/scrt_94_windows_session_configuration.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT简介与高亮功能概述 SecureCRT是一款广泛应用于IT行业的远程终端仿真程序,支持
recommend-type

如何设计一个基于FPGA的多功能数字钟,实现24小时计时、手动校时和定时闹钟功能?

设计一个基于FPGA的多功能数字钟涉及数字电路设计、时序控制和模块化编程。首先,你需要理解计时器、定时器和计数器的概念以及如何在FPGA平台上实现它们。《大连理工数字钟设计:模24计时器与闹钟功能》这份资料详细介绍了实验报告的撰写过程,包括设计思路和实现方法,对于理解如何构建数字钟的各个部分将有很大帮助。 参考资源链接:[大连理工数字钟设计:模24计时器与闹钟功能](https://wenku.csdn.net/doc/5y7s3r19rz?spm=1055.2569.3001.10343) 在硬件设计方面,你需要准备FPGA开发板、时钟信号源、数码管显示器、手动校时按钮以及定时闹钟按钮等
recommend-type

Argos客户端开发流程及Vue配置指南

资源摘要信息:"argos-client:客户端" 1. Vue项目基础操作 在"argos-client:客户端"项目中,首先需要进行项目设置,通过运行"yarn install"命令来安装项目所需的依赖。"yarn"是一个流行的JavaScript包管理工具,它能够管理项目的依赖关系,并将它们存储在"package.json"文件中。 2. 开发环境下的编译和热重装 在开发阶段,为了实时查看代码更改后的效果,可以使用"yarn serve"命令来编译项目并开启热重装功能。热重装(HMR, Hot Module Replacement)是指在应用运行时,替换、添加或删除模块,而无需完全重新加载页面。 3. 生产环境的编译和最小化 项目开发完成后,需要将项目代码编译并打包成可在生产环境中部署的版本。运行"yarn build"命令可以将源代码编译为最小化的静态文件,这些文件通常包含在"dist/"目录下,可以部署到服务器上。 4. 单元测试和端到端测试 为了确保项目的质量和可靠性,单元测试和端到端测试是必不可少的。"yarn test:unit"用于运行单元测试,这是测试单个组件或函数的测试方法。"yarn test:e2e"用于运行端到端测试,这是模拟用户操作流程,确保应用程序的各个部分能够协同工作。 5. 代码规范与自动化修复 "yarn lint"命令用于代码的检查和风格修复。它通过运行ESLint等代码风格检查工具,帮助开发者遵守预定义的编码规范,从而保持代码风格的一致性。此外,它也能自动修复一些可修复的问题。 6. 自定义配置与Vue框架 由于"argos-client:客户端"项目中提到的Vue标签,可以推断该项目使用了Vue.js框架。Vue是一个用于构建用户界面的渐进式JavaScript框架,它允许开发者通过组件化的方式构建复杂的单页应用程序。在项目的自定义配置中,可能需要根据项目需求进行路由配置、状态管理(如Vuex)、以及与后端API的集成等。 7. 压缩包子文件的使用场景 "argos-client-master"作为压缩包子文件的名称,表明该项目可能还涉及打包发布或模块化开发。在项目开发中,压缩包子文件通常用于快速分发和部署代码,或者是在模块化开发中作为依赖进行引用。使用压缩包子文件可以确保项目的依赖关系清晰,并且方便其他开发者快速安装和使用。 通过上述内容的阐述,我们可以了解到在进行"argos-client:客户端"项目的开发时,需要熟悉的一系列操作,包括项目设置、编译和热重装、生产环境编译、单元测试和端到端测试、代码风格检查和修复,以及与Vue框架相关的各种配置。同时,了解压缩包子文件在项目中的作用,能够帮助开发者高效地管理和部署代码。