通过二分法用c语言解决八数码问题
时间: 2024-01-05 16:03:08 浏览: 94
c语言解决8数码问题
八数码问题是指在一个3x3的棋盘上,摆放着编号为1~8的8个方块,再加上一个空格,共计9个空格,如下图所示:
```
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | | 5 |
+---+---+---+
| 6 | 7 | 8 |
+---+---+---+
```
现在需要将这些方块按照规定的顺序移动,使得最终的棋盘状态变为:
```
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | |
+---+---+---+
```
其中,每次只能移动与空格相邻的方块,且空格不能移动。现在我们需要用C语言实现通过二分法解决八数码问题。
首先,我们需要定义一个结构体用来表示每一个棋盘状态,其中包括:
- 一个3x3的二维数组,表示当前的棋盘状态;
- 一个整数,表示当前状态到达目标状态的代价估计值(可以用曼哈顿距离或者错误位置数量等方式计算);
- 一个指向父状态的指针,用来记录状态转移路径。
代码如下:
```c
typedef struct node {
int board[3][3];
int cost;
struct node *parent;
} Node;
```
接下来,我们需要实现状态转移函数,即根据当前的状态,生成所有可能的下一步状态。这里我们可以定义一个函数`generate_next_states`,它的输入是当前状态的指针,输出是所有可能的下一步状态的指针数组。该函数的实现如下:
```c
Node** generate_next_states(Node *current_state, int *num_states) {
int x, y, i, j, temp;
Node **next_states = (Node**)malloc(sizeof(Node*) * 4);
*num_states = 0;
// 找到空格的位置
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
if (current_state->board[i][j] == 0) {
x = i;
y = j;
break;
}
}
}
// 生成所有可能的下一步状态
if (x > 0) { // 上移
next_states[*num_states] = (Node*)malloc(sizeof(Node));
memcpy(next_states[*num_states]->board, current_state->board, sizeof(int) * 9);
temp = next_states[*num_states]->board[x][y];
next_states[*num_states]->board[x][y] = next_states[*num_states]->board[x-1][y];
next_states[*num_states]->board[x-1][y] = temp;
next_states[*num_states]->cost = estimate_cost(next_states[*num_states]->board);
next_states[*num_states]->parent = current_state;
(*num_states)++;
}
if (x < 2) { // 下移
next_states[*num_states] = (Node*)malloc(sizeof(Node));
memcpy(next_states[*num_states]->board, current_state->board, sizeof(int) * 9);
temp = next_states[*num_states]->board[x][y];
next_states[*num_states]->board[x][y] = next_states[*num_states]->board[x+1][y];
next_states[*num_states]->board[x+1][y] = temp;
next_states[*num_states]->cost = estimate_cost(next_states[*num_states]->board);
next_states[*num_states]->parent = current_state;
(*num_states)++;
}
if (y > 0) { // 左移
next_states[*num_states] = (Node*)malloc(sizeof(Node));
memcpy(next_states[*num_states]->board, current_state->board, sizeof(int) * 9);
temp = next_states[*num_states]->board[x][y];
next_states[*num_states]->board[x][y] = next_states[*num_states]->board[x][y-1];
next_states[*num_states]->board[x][y-1] = temp;
next_states[*num_states]->cost = estimate_cost(next_states[*num_states]->board);
next_states[*num_states]->parent = current_state;
(*num_states)++;
}
if (y < 2) { // 右移
next_states[*num_states] = (Node*)malloc(sizeof(Node));
memcpy(next_states[*num_states]->board, current_state->board, sizeof(int) * 9);
temp = next_states[*num_states]->board[x][y];
next_states[*num_states]->board[x][y] = next_states[*num_states]->board[x][y+1];
next_states[*num_states]->board[x][y+1] = temp;
next_states[*num_states]->cost = estimate_cost(next_states[*num_states]->board);
next_states[*num_states]->parent = current_state;
(*num_states)++;
}
return next_states;
}
```
其中,`estimate_cost`是一个估价函数,用于估计当前状态到目标状态的代价。这里我们采用曼哈顿距离作为估价函数,其计算方式如下:
```c
int estimate_cost(int board[3][3]) {
int i, j, x, y, cost = 0;
int target_x[9] = {0, 0, 0, 1, 1, 1, 2, 2, 2};
int target_y[9] = {0, 1, 2, 0, 1, 2, 0, 1, 2};
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
if (board[i][j] == 0) continue;
x = target_x[board[i][j]-1];
y = target_y[board[i][j]-1];
cost += abs(i - x) + abs(j - y);
}
}
return cost;
}
```
最后,我们可以实现一个二分法函数`solve_puzzle`,它的输入是初始状态和目标状态,输出是最终的状态转移路径。该函数的实现如下:
```c
Node* solve_puzzle(Node *initial_state, Node *target_state) {
int num_states, i;
Node *current_state, **next_states, *min_state;
int l = 0, r = 100, mid;
// 初始化初始状态
initial_state->cost = estimate_cost(initial_state->board);
initial_state->parent = NULL;
// 二分法搜索
while (l <= r) {
mid = (l + r) / 2;
// 初始化搜索队列
Queue *queue = create_queue();
enqueue(queue, initial_state);
// BFS搜索
while (!is_queue_empty(queue)) {
current_state = dequeue(queue);
// 到达目标状态,返回路径
if (memcmp(current_state->board, target_state->board, sizeof(int) * 9) == 0) {
return current_state;
}
// 生成所有可能的下一步状态
next_states = generate_next_states(current_state, &num_states);
// 将下一步状态加入搜索队列
for (i = 0; i < num_states; i++) {
if (next_states[i]->cost + mid <= r) {
enqueue(queue, next_states[i]);
} else {
free(next_states[i]);
}
}
free(next_states);
}
// 更新搜索区间
if (current_state->cost <= mid) {
min_state = current_state;
r = current_state->cost;
} else {
l = current_state->cost;
}
}
return min_state;
}
```
其中,`Queue`是一个队列结构体,可以用链表实现。`create_queue`、`enqueue`、`dequeue`和`is_queue_empty`分别用来创建队列、入队、出队和判断队列是否为空。这里我们不再赘述,读者可以自行实现。
至此,我们就完成了通过二分法用C语言解决八数码问题的程序。
阅读全文