编写快速排序算法,能够对数组进行快速排序写出全部代码

时间: 2023-05-21 10:07:27 浏览: 65
好的,以下是快速排序算法的完整实现: ```python def quicksort(arr): if len(arr) <= 1: return arr else: pivot = arr[0] less = [x for x in arr[1:] if x < pivot] greater = [x for x in arr[1:] if x >= pivot] return quicksort(less) + [pivot] + quicksort(greater) ``` 这段代码使用了递归和列表推导式,先选取第一个元素作为基准点,并将剩下的元素分为比基准点小和比基准点大的两部分,再对这两部分分别进行快速排序,最后将结果合并成一个完整的有序数组。
相关问题

写一份C语言快速排序算法

### 回答1: 以下是C语言实现的快速排序算法: ```c #include <stdio.h> // 交换函数 void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } // 分割函数 int partition(int arr[], int low, int high) { int pivot = arr[high]; int i = (low - 1); for (int j = low; j <= high - 1; j++) { if (arr[j] < pivot) { i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return (i + 1); } // 快速排序函数 void quickSort(int arr[], int low, int high) { if (low < high) { int pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } // 测试函数 int main() { int arr[] = { 10, 7, 8, 9, 1, 5 }; int n = sizeof(arr) / sizeof(arr[0]); quickSort(arr, 0, n - 1); printf("排序后的数组: "); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); } return 0; } ``` 快速排序算法的时间复杂度为 O(n log n),在大多数情况下比其他常见的排序算法更快。 ### 回答2: 快速排序(Quick Sort)是一种高效的排序算法,采用“分治”的思想实现。下面是一个使用C语言实现的快速排序算法的示例: ```c #include <stdio.h> // 交换两个元素的值 void swap(int *a, int *b) { int temp = *a; *a = *b; *b = temp; } // 划分子数组,返回划分位置的下标 int partition(int arr[], int low, int high) { int pivot = arr[high]; // 选取最后一个元素作为基准值 int i = low - 1; for (int j = low; j <= high - 1; j++) { // 如果当前元素小于等于基准值,将其交换到前面 if (arr[j] <= pivot) { i++; swap(&arr[i], &arr[j]); } } // 将基准值交换到正确的位置 swap(&arr[i + 1], &arr[high]); return i + 1; } // 快速排序递归函数 void quickSort(int arr[], int low, int high) { if (low < high) { int pi = partition(arr, low, high); // 划分位置的下标 // 递归地排序基准值左边的子数组和右边的子数组 quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } // 测试示例 int main() { int arr[] = {9, 5, 2, 7, 1, 8}; int n = sizeof(arr) / sizeof(arr[0]); printf("原数组:"); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); } quickSort(arr, 0, n - 1); printf("\n排序后的数组:"); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); } return 0; } ``` 以上代码实现了快速排序算法。它首先选择数组中最后一个元素作为基准值,然后通过划分子数组的方式将小于等于基准值的元素移动到基准值的左边,将大于基准值的元素移动到其右边。然后递归地对基准值左边的子数组和右边的子数组执行同样的操作。最终,整个数组变为有序。以上代码在测试中使用了一个示例数组进行排序,并输出排序前和排序后的数组。 ### 回答3: 快速排序是一种常用的排序算法,使用分而治之的策略。下面是使用C语言编写的快速排序算法示例: ```c #include <stdio.h> // 交换两个元素的函数 void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } // 对数组进行划分,并返回划分后的中间位置索引 int partition(int arr[], int low, int high) { int pivot = arr[high]; // 选择最后一个元素作为基准点 int i = (low - 1); // 设置小于基准点的元素位置 for (int j = low; j <= high - 1; j++) { // 如果当前元素小于基准点,则将其交换到小于基准点的区域内 if (arr[j] < pivot) { i++; swap(&arr[i], &arr[j]); } } // 将基准点放入正确的位置 swap(&arr[i + 1], &arr[high]); return (i + 1); // 返回基准点的位置 } // 快速排序函数 void quickSort(int arr[], int low, int high) { if (low < high) { int pivot = partition(arr, low, high); // 将数组划分为两部分 quickSort(arr, low, pivot - 1); // 对左侧子数组进行快速排序 quickSort(arr, pivot + 1, high); // 对右侧子数组进行快速排序 } } // 测试 int main() { int arr[] = {10, 7, 8, 9, 1, 5}; int n = sizeof(arr) / sizeof(arr[0]); quickSort(arr, 0, n - 1); printf("排序后的数组: "); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); } return 0; } ``` 以上代码中,快速排序函数`quickSort`调用了`partition`函数来划分数组,并递归地对左侧和右侧子数组进行排序。`swap`函数用于交换两个元素的值。 在`main`函数中,首先定义了一个整数数组`arr`,然后调用`quickSort`函数对该数组进行快速排序。最后,打印出排序后的数组。 运行结果: ``` 排序后的数组: 1 5 7 8 9 10 ``` 这就是使用C语言编写的快速排序算法。快速排序是一种高效的排序算法,平均时间复杂度为O(nlogn)。

写一个一最后一个元素为枢轴的快速排序递归算法代码

好的,以下是针对您的问题编写的一份最后一个元素为枢轴的快速排序递归算法代码(使用C++实现): ``` void partition(int arr[], int low, int high, int& pivotIndex) { int pivotValue = arr[high]; // 将最后一个元素作为枢轴 int i = low - 1; for (int j = low; j < high; j++) { if (arr[j] <= pivotValue) { i++; std::swap(arr[i], arr[j]); } } std::swap(arr[i + 1], arr[high]); pivotIndex = i + 1; } void quickSort(int arr[], int low, int high) { if (low < high) { int pivotIndex; partition(arr, low, high, pivotIndex); // 对数组进行划分 quickSort(arr, low, pivotIndex - 1); // 对划分出的左侧子数组排序 quickSort(arr, pivotIndex + 1, high); // 对划分出的右侧子数组排序 } } ``` 以上代码实现了最后一个元素为枢轴的快速排序递归算法。在分割数组时,首先将最后一个元素作为枢轴(pivotValue),然后通过比较每个元素与枢轴的大小关系,将小于等于枢轴的元素移到枢轴左侧,并将大于枢轴的元素移到枢轴右侧,最终将枢轴插入到中间位置上,实现了对数组的划分。然后递归地对划分出的左侧和右侧子数组进行排序,最终得到完整的有序数组。 希望这份代码可以帮助到您,如果您还有其他问题或需求,欢迎随时提出。

相关推荐

最新推荐

recommend-type

python源码基于YOLOV5安全帽检测系统及危险区域入侵检测告警系统源码.rar

本资源提供了一个基于YOLOv5的安全帽检测系统及危险区域入侵检测告警系统的Python源码 该系统主要利用深度学习和计算机视觉技术,实现了安全帽和危险区域入侵的实时检测与告警。具体功能如下: 1. 安全帽检测:系统能够识别并检测工人是否佩戴安全帽,对于未佩戴安全帽的工人,系统会发出告警信号,提醒工人佩戴安全帽。 2. 危险区域入侵检测:系统能够实时监测危险区域,如高空作业、机械设备等,对于未经授权的人员或车辆进入危险区域,系统会立即发出告警信号,阻止入侵行为,确保安全。 本资源采用了YOLOv5作为目标检测算法,该算法基于深度学习和卷积神经网络,具有较高的检测精度和实时性能。同时,本资源还提供了详细的使用说明和示例代码,便于用户快速上手和实现二次开发。 运行测试ok,课程设计高分资源,放心下载使用!该资源适合计算机相关专业(如人工智能、通信工程、自动化、软件工程等)的在校学生、老师或者企业员工下载,适合小白学习或者实际项目借鉴参考! 当然也可作为毕业设计、课程设计、课程作业、项目初期立项演示等。如果基础还行,可以在此代码基础之上做改动以实现更多功能,如增加多种安全帽和危险区域的识别、支持多种传感器数据输入、实现远程监控等。
recommend-type

基于SpringBoot的响应式技术博客的设计和实现(源码+文档)

本课题将许多当前比较热门的技术框架有机的集合起来,比如Spring boot、Spring data、Elasticsearch等。同时采用Java8作为主要开发语言,利用新型API,改善传统的开发模式和代码结构,实现了具有实时全文搜索、博客编辑、分布式文件存贮和能够在浏览器中适配移动端等功能的响应式技术博客。 本毕业设计选用SpringBoot框架,结合Thymeleaf,SpringData,SpringSecurity,Elasticsearch等技术,旨在为技术人员设计并实现一款用于记录并分享技术文档的技术博客。通过该技术博客,方便技术人员记录自己工作和学习过程中的点滴,不断地进行技术的总结和积累,从而提升自己的综合能力,并通过博客这一平台,把自己的知识、经验、教训分享给大家,为志同道合者提供一个相互交流、共同学习的平台,促使更多的人共同进步[9]。学习到别人的一些良好的设计思路、编码风格和优秀的技术能力,使笔者的设计初衷。本系统主要面向web端的用户,希望能给用户更多的学习和交流的选择。
recommend-type

javalab 3.zip

javalab 3.zip
recommend-type

J0001基于javaWeb的健身房管理系统设计与实现

该系统基于javaweb整合,数据层为MyBatis,mysql数据库,具有完整的业务逻辑,适合选题:健身、健身房、健身房管理等 健身房管理系统开发使用JSP技术和MySQL数据库,该系统所使用的是Java语言,Java是目前最为优秀的面相对象的程序设计语言,只需要开发者对概念有一些了解就可以编写出程序,因此,开发该系统总体上不会有很大的难度,同时在开发系统时,所使用的数据库也是必不可少的。开发此系统所使用的技术都是通过在大学期间学习的,对每科课程都有很好的掌握,对系统的开发具有很好的判断性。因此,在完成该系统的开发建设时所使用的技术是完全可行的。 学员主要实现的功能有:网站信息、课程信息、教练列表、我的信息、登录 员工主要实现的功能有:工资查询、会员管理、器材借还、健身卡管理、个人中心、登录 教练主要实现的功能有:工资查询、学员列表、个人中心 管理员是系统的核心,可以对系统信息进行更新和维护,主要实现的功能有:个人中心、学员管理、教练管理、网站信息管理、器械信息管理、课程信息管理。
recommend-type

架构.cpp

架构.cpp
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。