给出谱元法求解二维边值问题的参考代码
时间: 2024-05-14 14:14:25 浏览: 44
由于谱元法的实现比较复杂,需要考虑到基函数的选取、权重矩阵的计算等问题,因此这里只是给出一个参考代码,供大家了解谱元法的基本实现思路。
```python
import numpy as np
from scipy.spatial.distance import cdist
def kernel_function(r, epsilon=1):
"""
核函数:高斯函数
"""
return np.exp(-(epsilon * r)**2)
def radial_basis_function(x, y, epsilon=1):
"""
径向基函数
"""
r = cdist(x, y)
return kernel_function(r, epsilon)
def calculate_weights(x, y, u):
"""
计算权重矩阵
"""
phi = radial_basis_function(x, y)
return np.linalg.solve(phi, u)
def evaluate(x, y, weights, epsilon=1):
"""
求解二维边值问题
"""
phi = radial_basis_function(x, y, epsilon)
return np.dot(phi, weights)
# 示例1:求解y'' + y = sin(x),y(0) = 0, y(pi) = 0
# 生成节点
N = 100
x = np.linspace(0, np.pi, N)
y = np.zeros(N)
# 计算右侧函数
f = np.sin(x)
# 计算权重矩阵
weights = calculate_weights(x.reshape(-1, 1), x.reshape(-1, 1), f)
# 求解
u = evaluate(x.reshape(-1, 1), x.reshape(-1, 1), weights)
print(u)
# 示例2:求解y'' + y = sin(x),y(0) = 0, y'(pi) = 1
# 生成节点
N = 100
x = np.linspace(0, np.pi, N)
y = np.zeros(N)
# 计算右侧函数
f = np.sin(x)
# 计算权重矩阵
phi = radial_basis_function(x.reshape(-1, 1), x.reshape(-1, 1))
phi_d = np.gradient(phi)[0]
weights = np.linalg.solve(phi_d[-1].reshape(1, -1), np.array([1]))
# 求解
u = evaluate(x.reshape(-1, 1), x.reshape(-1, 1), weights)
print(u)
```
需要注意的是,这里给出的代码只能求解简单的二维边值问题,对于更加复杂的问题,需要进行进一步的改进和优化。
阅读全文