使用C语言来实现稀疏矩阵的三元组顺序表示方法及基本操作的实现(建立、输出、转置)并实现一个主菜单来实现。实现稀疏矩阵的三元组表示下的普通转置、快速转置。

时间: 2024-05-03 14:16:27 浏览: 18
玩家,1表示红方,-1表示黑方 :param depth: 当前搜索的深度 :param maximizing_player: 是否是最大化玩家 :return: 当前局面的估值以及最优的一步好的,这是一个关于C语言实现稀疏矩阵三元组顺序表示方法及基本操作的棋,(value, move) """ if depth == 0 or board.is_game_over(): return self.evaluate(board, player问题。以下是实现步骤: 1. 定义三元组结构体 ``` typedef struct { int row;), None possible_moves = board.get_possible_moves(player) if maximizing_player: value = float('-inf') best_move = None for move in possible_moves: new_board = copy.deepcopy(board) new_board.move(move) v, _ // 行号 int col; // 列号 int val; // 值 } Triple; ``` 2. 定义稀 = self.minimax(new_board, player, depth - 1, False) if v > value: value = v 疏矩阵结构体 ``` typedef struct { int rows; // 行数 int cols; // 列数 best_move = move return value, best_move else: value = float('inf') best_move = None int nums; // 非零元素数 Triple *data; // 三元组数组 } SparseMatrix; ``` 3 for move in possible_moves: new_board = copy.deepcopy(board) new_board.move(move) v, _ = self.minimax(new_board, player, depth - 1, True) if v < value: value = v best_move =. 实现稀疏矩阵的建立 ``` void createSparseMatrix(SparseMatrix *sm) { printf("请输入行 move return value, best_move def evaluate(self, board, player): """ 估值函数 :数、列数和非零元素个数:"); scanf("%d %d %d", &sm->rows, &smparam board: 当前的棋盘 :param player: 玩家,1表示红方,-1表示黑方 ->cols, &sm->nums); sm->data = (Triple *)malloc(sizeof(Triple) * sm->nums); printf :return: 估值 """ red_score = 0 black_score = 0 for i in range(board("请输入三元组的行号、列号和值:\n"); for (int i = 0; i < sm.row): for j in range(board.col): if board.board[i][j] > 0: red_score += self.get->nums; i++) { scanf("%d %d %d", &sm->data[i].row, &sm->data[i]._piece_score(board.board[i][j], i, j) elif board.board[i][j] < 0: black_score += self.get_piece_score(-board.board[i][j], i, j) if player == 1: return red_score - black_score col, &sm->data[i].val); } } ``` 4. 实现稀疏矩阵的输出 ``` void else: return black_score - red_score def get_piece_score(self, piece, i, j): """ 获取 printSparseMatrix(SparseMatrix sm) { int k = 0; for (int i = 0; i < sm.rows棋子的分值 :param piece: 棋子 :param i: 棋子所在行 :param j; i++) { for (int j = 0; j < sm.cols; j++) { if (k < sm.nums: 棋子所在列 :return: 分值 """ if piece == 1: # 兵 if && sm.data[k].row == i && sm.data[k].col == j) { printf("%d ", sm.data[k].val); i >= 5: return 10 else: return 5 elif piece == 2: # 车 k++; } else { printf("0 "); } } printf("\n"); } } ``` 5. return 50 elif piece == 3: # 马 return 30 elif piece == 4: 实现稀疏矩阵的转置 5.1普通转置 ``` void transposeSparseMatrix(SparseMatrix sm, # 相 if i >= 5: return 25 else: return 15 elif piece == SparseMatrix *tsm) { tsm->rows = sm.cols; tsm->cols = sm.rows; tsm->5: # 士 if i >= 5: return 25 else: return 15 elifnums = sm.nums; tsm->data = (Triple *)malloc(sizeof(Triple) * tsm->nums); if piece == 6: # 将 return 1000 elif piece == 7: # 炮 return (tsm->nums == 0) { return; } int *num = (int *)malloc(sizeof(int) * sm45 class ChessGame: """ 中国象棋游戏类 """ def __init__(self): pygame.init.cols); int *cpot = (int *)malloc(sizeof(int) * sm.cols); for (int i = 0; i() pygame.display.set_caption('中国象棋') self.screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) self.clock = pygame.time.Clock() self.font = pygame.font.SysFont('SimHei', 32) self.board = ChessBoard() < sm.cols; i++) { num[i] = 0; } for (int i = 0; i < sm self.ai = MinimaxAI(2) self.selected_piece = None self.current_player = 1 # 1表示.nums; i++) { num[sm.data[i].col]++; } cpot[0] = 0; for红方,-1表示黑方 self.game_over = False def run(self): while True: for event (int i = 1; i < sm.cols; i++) { cpot[i] = cpot[i-1] + num in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() return if not self.game_over: [i-1]; } for (int i = 0; i < sm.nums; i++) { int col = sm if event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1: # 左键选中棋子或者走.data[i].col; int pos = cpot[col]; tsm->data[pos].row = sm.data[i].col; 棋 if self.selected_piece is None: row, col = self.get_clicked_position(event.pos) if row is not None tsm->data[pos].col = sm.data[i].row; tsm->data[pos].val = sm.data[i].val; and self.board.board[row][col] * self.current_player > 0: self.selected_piece = (row, col) else cpot[col]++; } free(num); free(cpot); } ``` 5.2快速转置 ``` : row, col = self.get_clicked_position(event.pos) if row is not None and (row, col) in self.getvoid fastTransposeSparseMatrix(SparseMatrix sm, SparseMatrix *tsm) { tsm->rows = sm.cols; tsm_possible_moves(self.selected_piece[0], self.selected_piece[1]): self.board.move((self.selected_piece[0], self.selected_piece->cols = sm.rows; tsm->nums = sm.nums; tsm->data = (Triple *)malloc(sizeof(Tri[1], row, col)) self.selected_piece = None self.current_player = -self.current_player self.check_gameple) * tsm->nums); if (tsm->nums == 0) { return; } int *num_over() if not self.game_over and self.current_player == -1: move = self.ai.select_move(self.board, self.current = (int *)malloc(sizeof(int) * sm.cols); int *cpot = (int *)malloc(sizeof(int) * sm.cols); _player) self.board.move(move) self.current_player = -self.current_player self.check_game_over() elif event.button for (int i = 0; i < sm.cols; i++) { num[i] = 0; } for == 3: # 右键取消选中 self.selected_piece = None self.screen.fill(LIGHT_GREEN) (int i = 0; i < sm.nums; i++) { num[sm.data[i].col]++; } cp self.draw_board() self.draw_pieces() self.draw_selected_piece() self.draw_game_over_text() pygame.display.flip() ot[0] = 0; for (int i = 1; i < sm.cols; i++) { cpot[i self.clock.tick(60) def draw_board(self): for i in range(self.board.row): for j in range(self.board] = cpot[i-1] + num[i-1]; } for (int i = 0; i < sm.n.col): if (i + j) % 2 == 0: pygame.draw.rect(self.screen, WHITE, (j * CELLums; i++) { int col = sm.data[i].col; int pos = cpot[col]; tsm->data[pos_SIZE, i * CELL_SIZE, CELL_SIZE, CELL_SIZE)) else: pygame.draw.rect(self.screen, DARK_GREEN, (j].row = sm.data[i].col; tsm->data[pos].col = sm.data[i].row; tsm->data * CELL_SIZE, i * CELL_SIZE, CELL_SIZE, CELL_SIZE)) pygame.draw.rect(self.screen, BLACK, (0, 0[pos].val = sm.data[i].val; cpot[col]++; } free(num); free(cpot); } ``` , SCREEN_WIDTH, SCREEN_HEIGHT), 3) for i in range(1, self.board.col): pygame.draw.line(self.screen, BLACK, (i * CELL_SIZE, 0), (i * CELL_SIZE, SCREEN_HEIGHT), 3) pygame.draw.line(self6. 实现主菜单 ``` int main() { SparseMatrix sm, tsm; int choice; do { .screen, BLACK, (0, CELL_SIZE * 4), (CELL_SIZE * 2

最新推荐

recommend-type

Python实现的矩阵转置与矩阵相乘运算示例

主要介绍了Python实现的矩阵转置与矩阵相乘运算,结合实例形式分析了Python针对矩阵进行转置与相乘运算的相关实现技巧与操作注意事项,需要的朋友可以参考下
recommend-type

【案例】某企业人力资源盘点知识.docx

【案例】某企业人力资源盘点知识.docx
recommend-type

AUTOSAR-SWS-SAEJ1939NetworkManagement.pdf

AUTOSAR_SWS_SAEJ1939NetworkManagement.pdf
recommend-type

基于java的毕业生离校管理系统源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

onnxruntime-1.16.0-cp310-cp310-linux_armv7l.whl.zip

onnxruntime-1.16.0-cp310-cp310-linux_armv7l.whl.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

确保MATLAB回归分析模型的可靠性:诊断与评估的全面指南

![确保MATLAB回归分析模型的可靠性:诊断与评估的全面指南](https://img-blog.csdnimg.cn/img_convert/4b823f2c5b14c1129df0b0031a02ba9b.png) # 1. 回归分析模型的基础** **1.1 回归分析的基本原理** 回归分析是一种统计建模技术,用于确定一个或多个自变量与一个因变量之间的关系。其基本原理是拟合一条曲线或超平面,以最小化因变量与自变量之间的误差平方和。 **1.2 线性回归和非线性回归** 线性回归是一种回归分析模型,其中因变量与自变量之间的关系是线性的。非线性回归模型则用于拟合因变量与自变量之间非
recommend-type

引发C++软件异常的常见原因

1. 内存错误:内存溢出、野指针、内存泄漏等; 2. 数组越界:程序访问了超出数组边界的元素; 3. 逻辑错误:程序设计错误或算法错误; 4. 文件读写错误:文件不存在或无法打开、读写权限不足等; 5. 系统调用错误:系统调用返回异常或调用参数错误; 6. 硬件故障:例如硬盘损坏、内存损坏等; 7. 网络异常:网络连接中断、网络传输中断、网络超时等; 8. 程序异常终止:例如由于未知原因导致程序崩溃等。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。