def move_towards_player(self, player): # Find direction vector (dx, dy) between enemy and player. dx, dy = player.rect.x - self.rect.x, player.rect.y - self.rect.y dist = math.hypot(dx, dy) dx, dy = dx / dist, dy / dist # Normalize. # Move along this normalized vector towards the player at current speed. self.rect.x += dx * self.speed self.rect.y += dy * self.speed def move_towards_player2(self, player): # Find direction vector (dx, dy) between enemy and player. dirvect = pygame.math.Vector2(player.rect.x - self.rect.x, player.rect.y - self.rect.y) dirvect.normalize() # Move along this normalized vector towards the player at current speed. dirvect.scale_to_length(self.speed) self.rect.move_ip(dirvect)

时间: 2023-06-15 09:08:24 浏览: 74
这段代码是一个敌人追逐玩家的函数,两个函数的功能相同,但是第二个函数使用了pygame中的向量(Vector2)对象,使代码更加简洁易懂,同时也提高了代码的可读性和可维护性。具体来说,第二个函数中的dirvect就是一个向量对象,它表示从敌人到玩家的方向向量。normalize()方法可以将这个向量归一化,即使它的模长为1,这样做的好处是可以保证敌人每次移动的距离一定。scale_to_length()方法则可以将这个向量的长度按照敌人的速度进行缩放,最后使用move_ip()方法将敌人移动到新的位置。相比之下,第一个函数中需要手动计算向量的长度和方向,并且使用两个变量来存储这些信息,代码比较冗长,可读性差一些。
相关问题

def move_towards_player(self, player): # Find direction vector (dx, dy) between enemy and player. dx, dy = player.rect.x - self.rect.x, player.rect.y - self.rect.y dist = math.hypot(dx, dy) dx, dy = dx / dist, dy / dist

这是一个 Python 代码段,它定义了一个名为 `move_towards_player` 的方法,该方法接受一个 `player` 参数来表示玩家对象。该方法的作用是将当前对象(敌人)朝向玩家移动。 该方法的实现首先计算敌人与玩家之间的方向向量,即 `dx` 和 `dy`。然后使用 `math.hypot` 函数计算方向向量的长度(即敌人与玩家之间的距离),并将方向向量标准化,以便在每个时间步长中移动相同的距离。 具体来说,`dx` 和 `dy` 的计算公式为: ``` dx = player.rect.x - self.rect.x dy = player.rect.y - self.rect.y ``` 然后,使用以下代码将方向向量标准化: ``` dist = math.hypot(dx, dy) dx, dy = dx / dist, dy / dist ``` 最后,可以将标准化的方向向量乘以敌人的速度(或移动距离)并将其添加到敌人的当前位置,以将敌人移动到玩家附近。

def move_towards_player2(self, player): # Find direction vector (dx, dy) between enemy and player. dirvect = pygame.math.Vector2(player.rect.x - self.rect.x, player.rect.y - self.rect.y) dirvect.normalize() # Move along this normalized vector towards the player at current speed. dirvect.scale_to_length(self.speed) self.rect.move_ip(dirvect)

这是一个 Python 类中的方法,用于让一个敌人角色向玩家角色移动。该方法接受一个参数 player,表示玩家角色对象。 首先,该方法计算出敌人角色与玩家角色之间的方向向量(dx,dy),使用 pygame.math.Vector2 类来实现。然后,将该向量归一化(即将其长度缩放为 1),以便用于指示移动方向。 接下来,将归一化的方向向量乘以敌人角色的速度(self.speed),从而得到一个具有正确长度和方向的位移向量。最后,使用 pygame.Rect 类的 move_ip() 方法将敌人角色的位置向该方向移动。 需要注意的是,该方法会直接修改敌人角色对象的位置,而不是返回一个新的位置值。
阅读全文

相关推荐

Create a function pixel_flip(lst, orig_lst, budget, results, i=0) that uses recursion to generate all possible new unique images from the input orig_lst, following these rules: • The input lst is the current list being processed. Initially, this will be the same as orig_lst which is the original flattened image. • The input budget represents the number of pixels that can still be flipped. When the budget reaches 0, no more pixels can be flipped. • The input results is a list of resulting flattened images with flipped pixels. Initially, this will be an empty list. • The input i represents the index of the pixel being processed, by default set to 0, which is used to drive the recursive function towards its base case (i.e., initially starting from i=0). At termination of the function, the argument results should contain all possibilities of the input orig_lst by only flipping pixels from 0 to 1 under both the budget and the adjacency constraints. fill code at #TODO def pixel_flip(lst: list[int], orig_lst: list[int], budget: int, results: list, i: int = 0) -> None: """ Uses recursion to generate all possibilities of flipped arrays where a pixel was a 0 and there was an adjacent pixel with the value of 1. :param lst: 1D list of integers representing a flattened image . :param orig_lst: 1D list of integers representing the original flattened image. :param budget: Integer representing the number of pixels that can be flipped . :param results: List of 1D lists of integers representing all possibilities of flipped arrays, initially empty. :param i: Integer representing the index of the pixel in question. :return: None. """ #TODO def check_adjacent_for_one(flat_image: list[int], flat_pixel: int) -> bool: """ Checks if a pixel has an adjacent pixel with the value of 1. :param flat_image: 1D list of integers representing a flattened image . :param flat_pixel: Integer representing the index of the pixel in question. :return: Boolean. """ #TODO

# Step 1 import set up turtle and Screenimport turtleimport randoms = turtle.Screen()s.title("Pong")s.bgcolor("black")s.setup(width=600, height=400) # Step 2 Create ballball = turtle.Turtle()ball.speed(0)ball.shape("circle")ball.color("white")ball.penup()ball.goto(0, 0)ball.dx = 4ball.dy = 4 # Step 3 Create AI paddleai = turtle.Turtle()ai.speed(0)ai.shape("square")ai.color("white")ai.penup()ai.goto(-250, 0)ai.shapesize(stretch_wid=5, stretch_len=1) # Step 4 Create a paddle For Youyou = turtle.Turtle()you.speed(0)you.shape("square")you.color("white")you.penup()you.goto(250, 0)you.shapesize(stretch_wid=5, stretch_len=1) # Step 5 Create Function to move AI paddledef move_ai_paddle(): y = ball.ycor() if y > 0: ai.sety(ai.ycor() + 2) else: ai.sety(ai.ycor() - 2) # Step 6 Create a Function to move the your paddledef paddle2_up(): y = you.ycor() y += 20 you.sety(y) def paddle2_down(): y = you.ycor() y -= 20 you.sety(y)# Your Paddle control it with keys.listen()s.onkeypress(paddle2_up, "Up")s.onkeypress(paddle2_down, "Down") # Step 7 Start the game with a while loopwhile True: s.update() # Move the ball ball.setx(ball.xcor() + ball.dx) ball.sety(ball.ycor() + ball.dy) # Check for collisions with the walls if ball.ycor() > 190 or ball.ycor() < -190: ball.dy *= -1 # Move the robot paddle towards the ball if ball.ycor() > ai.ycor(): ai.sety(ai.ycor() + 4) elif ball.ycor() < ai.ycor(): ai.sety(ai.ycor() - 4) # Check for end game conditions if ball.xcor() > 300: turtle.textinput("Game End", "You Loss Pong Game With AI!") break if ball.xcor() < -300: turtle.textinput("Game End", "You Win Pong Game With AI!") break # Check for collisions with the robot paddle if (ball.xcor() < -240 and ball.xcor() > -250) and (ball.ycor() < ai.ycor() + 40 and ball.ycor() > ai.ycor() - 40): if random.random() < 0.9: # 90% chance of collision ball.dx *= -1 # Check for collisions with the user paddle if (ball.xcor() > 240 and ball.xcor() < 250) and (ball.ycor() < you.ycor() + 40 and ball.ycor() > you.ycor() - 40): ball.dx *= -1 turtle.exitonclick()

Create a function pixel_flip(lst, orig_lst, budget, results, i=0) that uses recursion to generate all possible new unique images from the input orig_lst, following these rules: • The input lst is the current list being processed. Initially, this will be the same as orig_lst which is the original flattened image. • The input budget represents the number of pixels that can still be flipped. When the budget reaches 0, no more pixels can be flipped. • The input results is a list of resulting flattened images with flipped pixels. Initially, this will be an empty list. • The input i represents the index of the pixel being processed, by default set to 0, which is used to drive the recursive function towards its base case (i.e., initially starting from i=0). At termination of the function, the argument results should contain all possibilities of the input orig_lst by only flipping pixels from 0 to 1 under both the budget and the adjacency constraints. fill code at #TODO def pixel_flip(lst: list[int], orig_lst: list[int], budget: int, results: list, i: int = 0) -> None: """ Uses recursion to generate all possibilities of flipped arrays where a pixel was a 0 and there was an adjacent pixel with the value of 1. :param lst: 1D list of integers representing a flattened image . :param orig_lst: 1D list of integers representing the original flattened image. :param budget: Integer representing the number of pixels that can be flipped . :param results: List of 1D lists of integers representing all possibilities of flipped arrays, initially empty. :param i: Integer representing the index of the pixel in question. :return: None. """ #TODO

from turtle import * def star(center_point,first_vertex,radius): """根据圆心坐标及其第一个顶点坐标绘制五角星""" up() seth(0) goto(center_point) angle = towards(first_vertex) goto(first_vertex) lt(angle) rt(90) # 确定五个顶点坐标 five_vertex_points = [first_vertex] for _ in range(4): circle(-radius,360/5) five_vertex_points.append(pos()) # 开始绘制五角星 goto(first_vertex) color('yellow') down() begin_fill() for index in range(len(five_vertex_points)): goto(five_vertex_points[(index*2)%len(five_vertex_points)]) goto(first_vertex) end_fill() def China_Flag(height,start_x = None,start_y = None): tracer(0) # 设置高宽 width = (height / 2) * 3 if start_x is None and start_y is None: # 设置绘制起点 start_x = -(width/2) start_y = -(height/2) up() goto(start_x,start_y) down() # 绘制矩形旗面 setheading(0) color('red') begin_fill() for i in range(2): fd(width) lt(90) fd(height) lt(90) end_fill() # 确定五颗星的中心坐标 five_star_center_points = [(start_x+width/2/15*5,start_y+(1/2+5/20)*height), (start_x+width/2/15*10,start_y+(1/2+8/20)*height), (start_x+width/2/15*12,start_y+(1/2+6/20)*height), (start_x+width/2/15*12,start_y+(1/2+3/20)*height), (start_x+width/2/15*10,start_y+(1/2+1/20)*height),] # 确定五颗星的第一个顶点坐标 big_radius = height/2/10*3 # 大五星外接圆半径 small_radius = height/2/10 # 小五星外接圆半径 up() goto(five_star_center_points[0]) setheading(90) fd(big_radius) p = pos() first_vertex_points = [p] # 第一个顶点坐标 for point in five_star_center_points[1:]: goto(point) seth(0) angle = towards(five_star_center_points[0]) lt(angle) fd(small_radius) first_vertex_points.append(pos()) up() # 绘制五角星 # 大五角星 star(five_star_center_points[0], first_vertex_points[0], big_radius) # 4个小五角星 for i in range(1,5): star(five_star_center_points[i],first_vertex_points[i],small_radius) if __name__ == '__main__': screensize(600, 400) # 画布大小 bgcolor('black') # 背景颜色为黑色 speed(0) # 速度为最快 China_Flag(192,50,15) hideturtle() done()

最新推荐

recommend-type

清华大学崔鹏等最新「分布外泛化(Out-Of-Distribution Generalization)」 综述论文

分布外泛化(Out-of-Distribution Generalization, OOD)是深度学习领域的一个关键挑战,尤其是在现实世界的应用中,训练数据与测试数据的分布往往不完全相同,即非独立同分布(i.i.d.)假设通常无法满足。...
recommend-type

ListView上下翻页效果.zip

ListView上下翻页效果
recommend-type

Android项目之——漂亮的平台书架.zip

Android项目之——漂亮的平台书架
recommend-type

TestBrightness2.zip

TestBrightness2
recommend-type

00_Método_toBands.ipynb

gee python 教程(西班牙语)
recommend-type

Java集合ArrayList实现字符串管理及效果展示

资源摘要信息:"Java集合框架中的ArrayList是一个可以动态增长和减少的数组实现。它继承了AbstractList类,并且实现了List接口。ArrayList内部使用数组来存储添加到集合中的元素,且允许其中存储重复的元素,也可以包含null元素。由于ArrayList实现了List接口,它支持一系列的列表操作,包括添加、删除、获取和设置特定位置的元素,以及迭代器遍历等。 当使用ArrayList存储元素时,它的容量会自动增加以适应需要,因此无需在创建ArrayList实例时指定其大小。当ArrayList中的元素数量超过当前容量时,其内部数组会重新分配更大的空间以容纳更多的元素。这个过程是自动完成的,但它可能导致在列表变大时会有性能上的损失,因为需要创建一个新的更大的数组,并将所有旧元素复制到新数组中。 在Java代码中,使用ArrayList通常需要导入java.util.ArrayList包。例如: ```java import java.util.ArrayList; public class Main { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("Hello"); list.add("World"); // 运行效果图将显示包含"Hello"和"World"的列表 } } ``` 上述代码创建了一个名为list的ArrayList实例,并向其中添加了两个字符串元素。在运行效果图中,可以直观地看到这个列表的内容。ArrayList提供了多种方法来操作集合中的元素,比如get(int index)用于获取指定位置的元素,set(int index, E element)用于更新指定位置的元素,remove(int index)或remove(Object o)用于删除元素,size()用于获取集合中元素的个数等。 为了演示如何使用ArrayList进行字符串的存储和管理,以下是更加详细的代码示例,以及一个简单的运行效果图展示: ```java import java.util.ArrayList; import java.util.Iterator; public class Main { public static void main(String[] args) { // 创建一个存储字符串的ArrayList ArrayList<String> list = new ArrayList<String>(); // 向ArrayList中添加字符串元素 list.add("Apple"); list.add("Banana"); list.add("Cherry"); list.add("Date"); // 使用增强for循环遍历ArrayList System.out.println("遍历ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 使用迭代器进行遍历 System.out.println("使用迭代器遍历:"); Iterator<String> iterator = list.iterator(); while (iterator.hasNext()) { String fruit = iterator.next(); System.out.println(fruit); } // 更新***List中的元素 list.set(1, "Blueberry"); // 移除ArrayList中的元素 list.remove(2); // 再次遍历ArrayList以展示更改效果 System.out.println("修改后的ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 获取ArrayList的大小 System.out.println("ArrayList的大小为: " + list.size()); } } ``` 在运行上述代码后,控制台会输出以下效果图: ``` 遍历ArrayList: Apple Banana Cherry Date 使用迭代器遍历: Apple Banana Cherry Date 修改后的ArrayList: Apple Blueberry Date ArrayList的大小为: 3 ``` 此代码段首先创建并初始化了一个包含几个水果名称的ArrayList,然后展示了如何遍历这个列表,更新和移除元素,最终再次遍历列表以展示所做的更改,并输出列表的当前大小。在这个过程中,可以看到ArrayList是如何灵活地管理字符串集合的。 此外,ArrayList的实现是基于数组的,因此它允许快速的随机访问,但对元素的插入和删除操作通常需要移动后续元素以保持数组的连续性,所以这些操作的性能开销会相对较大。如果频繁进行插入或删除操作,可以考虑使用LinkedList,它基于链表实现,更适合于这类操作。 在开发中使用ArrayList时,应当注意避免过度使用,特别是当知道集合中的元素数量将非常大时,因为这样可能会导致较高的内存消耗。针对特定的业务场景,选择合适的集合类是非常重要的,以确保程序性能和资源的最优化利用。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MATLAB信号处理优化】:算法实现与问题解决的实战指南

![【MATLAB信号处理优化】:算法实现与问题解决的实战指南](https://i0.hdslb.com/bfs/archive/e393ed87b10f9ae78435997437e40b0bf0326e7a.png@960w_540h_1c.webp) # 1. MATLAB信号处理基础 MATLAB,作为工程计算和算法开发中广泛使用的高级数学软件,为信号处理提供了强大的工具箱。本章将介绍MATLAB信号处理的基础知识,包括信号的类型、特性以及MATLAB处理信号的基本方法和步骤。 ## 1.1 信号的种类与特性 信号是信息的物理表示,可以是时间、空间或者其它形式的函数。信号可以被分
recommend-type

在西门子S120驱动系统中,更换SMI20编码器时应如何确保数据的正确备份和配置?

在西门子S120驱动系统中更换SMI20编码器是一个需要谨慎操作的过程,以确保数据的正确备份和配置。这里是一些详细步骤: 参考资源链接:[西门子Drive_CLIQ编码器SMI20数据在线读写步骤](https://wenku.csdn.net/doc/39x7cis876?spm=1055.2569.3001.10343) 1. 在进行任何操作之前,首先确保已经备份了当前工作的SMI20编码器的数据。这通常需要使用STARTER软件,并连接CU320控制器和电脑。 2. 从拓扑结构中移除旧编码器,下载当前拓扑结构,然后删除旧的SMI
recommend-type

实现2D3D相机拾取射线的关键技术

资源摘要信息: "camera-picking-ray:为2D/3D相机创建拾取射线" 本文介绍了一个名为"camera-picking-ray"的工具,该工具用于在2D和3D环境中,通过相机视角进行鼠标交互时创建拾取射线。拾取射线是指从相机(或视点)出发,通过鼠标点击位置指向场景中某一点的虚拟光线。这种技术广泛应用于游戏开发中,允许用户通过鼠标操作来选择、激活或互动场景中的对象。为了实现拾取射线,需要相机的投影矩阵(projection matrix)和视图矩阵(view matrix),这两个矩阵结合后可以逆变换得到拾取射线的起点和方向。 ### 知识点详解 1. **拾取射线(Picking Ray)**: - 拾取射线是3D图形学中的一个概念,它是从相机出发穿过视口(viewport)上某个特定点(通常是鼠标点击位置)的射线。 - 在游戏和虚拟现实应用中,拾取射线用于检测用户选择的对象、触发事件、进行命中测试(hit testing)等。 2. **投影矩阵(Projection Matrix)与视图矩阵(View Matrix)**: - 投影矩阵负责将3D场景中的点映射到2D视口上,通常包括透视投影(perspective projection)和平面投影(orthographic projection)。 - 视图矩阵定义了相机在场景中的位置和方向,它将物体从世界坐标系变换到相机坐标系。 - 将投影矩阵和视图矩阵结合起来得到的invProjView矩阵用于从视口坐标转换到相机空间坐标。 3. **实现拾取射线的过程**: - 首先需要计算相机的invProjView矩阵,这是投影矩阵和视图矩阵的逆矩阵。 - 使用鼠标点击位置的视口坐标作为输入,通过invProjView矩阵逆变换,计算出射线在世界坐标系中的起点(origin)和方向(direction)。 - 射线的起点一般为相机位置或相机前方某个位置,方向则是从相机位置指向鼠标点击位置的方向向量。 - 通过编程语言(如JavaScript)的矩阵库(例如gl-mat4)来执行这些矩阵运算。 4. **命中测试(Hit Testing)**: - 使用拾取射线进行命中测试是一种检测射线与场景中物体相交的技术。 - 在3D游戏开发中,通过计算射线与物体表面的交点来确定用户是否选中了一个物体。 - 此过程中可能需要考虑射线与不同物体类型的交互,例如球体、平面、多边形网格等。 5. **JavaScript与矩阵操作库**: - JavaScript是一种广泛用于网页开发的编程语言,在WebGL项目中用于处理图形渲染逻辑。 - gl-mat4是一个矩阵操作库,它提供了创建和操作4x4矩阵的函数,这些矩阵用于WebGL场景中的各种变换。 - 通过gl-mat4库,开发者可以更容易地执行矩阵运算,而无需手动编写复杂的数学公式。 6. **模块化编程**: - camera-picking-ray看起来是一个独立的模块或库,它封装了拾取射线生成的算法,让开发者能够通过简单的函数调用来实现复杂的3D拾取逻辑。 - 模块化编程允许开发者将拾取射线功能集成到更大的项目中,同时保持代码的清晰和可维护性。 7. **文件名称列表**: - 提供的文件名称列表是"camera-picking-ray-master",表明这是一个包含多个文件和子目录的模块或项目,通常在GitHub等源代码托管平台上使用master分支来标识主分支。 - 开发者可以通过检查此项目源代码来更深入地理解拾取射线的实现细节,并根据需要进行修改或扩展功能。 ### 结论 "camera-picking-ray"作为一个技术工具,为开发者提供了一种高效生成和使用拾取射线的方法。它通过组合和逆变换相机矩阵,允许对3D场景中的物体进行精准选择和交互。此技术在游戏开发、虚拟现实、计算机辅助设计(CAD)等领域具有重要应用价值。通过了解和应用拾取射线,开发者可以显著提升用户的交互体验和操作精度。