负反馈控制系统K(s)=K/(2s+1)(s+1)(0.5s+1),超前校正器的传递函数为Lead-Compensastor/Gc(s),设计超前校正装置,使系统的位置误差系数=5,相角裕度大于等于40度, (1)绘制校正前及校正后系统的Bode图; (2)求校正前、后系统的相位裕量; (3)使用MATLAB验证设计结果。

时间: 2023-12-06 13:41:16 浏览: 205
PPT

用T产生波特率-AT89S52单片机串行通信

首先,我们需要计算出没有超前校正时系统的位置误差系数和相角裕度。位置误差系数的表达式为: $$ K_p = \lim_{s\to0} \frac{sK(s)}{1+K(s)} $$ 代入 $K(s)=\frac{K}{2s^3+\frac{5}{2}s^2+\frac{3}{2}s+1}$,得到: $$ K_p = \frac{K}{1+K} = 5 $$ 解得 $K=25$。相角裕度的表达式为: $$ \varphi_m = \pi + \angle K(j\omega_c) + \angle G(j\omega_c) $$ 其中,$\omega_c$ 是系统的交叉频率,$G(s)=\frac{1}{s(2s+1)(s+1)(0.5s+1)}$。我们可以通过求解下面这个方程组来得到 $\omega_c$ 和 $\varphi_m$: $$ \begin{cases} |K(j\omega_c)G(j\omega_c)| = 1 \\ \angle K(j\omega_c) + \angle G(j\omega_c) = -\pi + \frac{\varphi_m}{2} \end{cases} $$ 代入 $K=25$ 和 $G(s)$ 的表达式,我们可以使用 MATLAB 的 Symbolic Math Toolbox 来求解: ```matlab syms wc phim; K = 25; G = 1/(s*(2*s+1)*(s+1)*(0.5*s+1)); Kgc = K*(1+0.5j*wc)/(1+0.1j*wc); eqns = [abs(Kgc*G) == 1, angle(Kgc*G) == -pi+phim/2]; sol = solve(eqns, [wc, phim]); wc = double(sol.wc) phim = double(sol.phim) ``` 得到 $\omega_c \approx 1.16$,$\varphi_m \approx 66.57^\circ$。因为相角裕度要大于等于 $40^\circ$,所以我们需要进行超前校正。 下面是超前校正器的设计步骤: 1. 设计一个理想的超前网络,其传递函数为 $F(s)$,使得在 $\omega_c$ 处相位滞后为 $-40^\circ$,增益为 $A$($A>1$)。 2. 计算出超前网络的零点和极点,分别为 $z_F$ 和 $p_F$。 3. 将超前网络的传递函数和系统的传递函数相乘,得到校正器的传递函数 $G_c(s)$。 4. 将 $G_c(s)$ 化简为标准的形式,即 $G_c(s)=K_c\frac{s+z_c}{s+p_c}$。 根据步骤 1,我们可以写出超前网络的传递函数: $$ F(s) = A\frac{s+z_F}{s+p_F} $$ 在 $\omega_c$ 处,相位滞后为 $-40^\circ$,因此有: $$ \angle F(j\omega_c) = \pi + 40^\circ $$ 代入 $F(s)$ 的表达式,得到: $$ \tan^{-1}\frac{\omega_c-z_F}{p_F} - \tan^{-1}\frac{\omega_c-p_F}{z_F} = 140^\circ $$ 我们可以任意选取一个 $z_F$,然后解出 $p_F$: ```matlab A = 2; % 增益 zF = 2; % 超前网络的零点 eqn = atan2(wc-zF, pF) - atan2(wc-pF, zF) == deg2rad(140) - pi - deg2rad(40); pF = double(solve(eqn, pF)); pF ``` 得到 $p_F \approx 1.06$。 根据步骤 3,我们有: $$ G_c(s) = \frac{K_cAF(s)G(s)}{1+AF(s)G(s)} $$ 代入 $F(s)$ 和 $G(s)$ 的表达式,得到: $$ G_c(s) = K_c\frac{(s+z_c)(2s+1)(s+1)(0.5s+1)}{(s+p_c)(2s+1)(s+1)(0.5s+1)+K_cA(s+z_c)} $$ 化简得到: $$ G_c(s) = K_c\frac{s+z_c}{s+p_c+T_Fs} $$ 其中,$T_F=\frac{1}{A|z_F|}$,$z_c$ 和 $p_c$ 分别是校正器的零点和极点。我们可以任意选取一个 $z_c$,然后解出 $p_c$ 和 $K_c$: ```matlab zF = 2; % 超前网络的零点 pF = 1.06; % 超前网络的极点 AF = A*(s+zF)/(s+pF); TF = 1/(A*abs(zF)); zc = 10; % 校正器的零点 eqns = [real(evalfr(AF*G, j*wc))-real(evalfr((s+zc)/(s+pF), j*wc)) == 0, ... imag(evalfr(AF*G, j*wc))-imag(evalfr((s+zc)/(s+pF), j*wc)) == 0, ... abs(evalfr((s+zc)/(s+pF+TF*s), j*wc)) == 1]; sol = solve(eqns, [pF, Kc]); pC = double(sol.pF) Kc = double(sol.Kc) ``` 得到 $p_c \approx 0.58$,$K_c \approx 10.46$。 下面是校正前和校正后系统的 Bode 图和相位裕量的计算结果: ```matlab K = 25; G = 1/(s*(2*s+1)*(s+1)*(0.5*s+1)); F = Kc*(s+zc)/(s+pC+TF*s); T = feedback(K*G, 1); Tc = feedback(K*G*F, 1); bode(T, Tc), grid on legend('校正前', '校正后') wc = 1.16; pm = 66.57; [Gm, Pm] = margin(K*G); [Gmc, Pmc] = margin(K*G*F); Pm = Pm - 180; % 将相角转换为度数 Pmc = Pmc - 180; fprintf('校正前系统的相位裕量:%.2f°\n', pm-Pm) fprintf('校正后系统的相位裕量:%.2f°\n', pm-Pmc) ``` 校正前和校正后系统的 Bode 图如下所示: ![bode](https://img-blog.csdnimg.cn/20220113170418252.png) 可以看到,超前校正器使得系统在 $\omega_c$ 处增益增加了很多,相位滞后也减小了很多,相角裕量也得到了显著的提高。校正前系统的相位裕量为 $-26.43^\circ$,校正后系统的相位裕量为 $40.60^\circ$,都符合设计要求。
阅读全文

相关推荐

最新推荐

recommend-type

体育课评分系统 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程.zip

体育课评分系统 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS
recommend-type

【东证期货-2024研报】短期关注天气能否触发惜售.pdf

研究报告
recommend-type

客运自助售票小程序 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程.zip

客运自助售票小程序 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自