DFA最小化状态转换图代码实现
时间: 2023-07-27 12:19:52 浏览: 220
以下是DFA最小化状态转换图的代码实现,采用Hopcroft算法:
```python
from typing import List, Tuple, Dict, Any, Union
def hopcroft(dfa: Dict[str, Dict[str, str]]) -> List[List[str]]:
# 初始化划分
partition = [list(dfa.keys()), []]
# 初始化等价类
equiv_class = {}
for state in dfa:
accept = dfa[state].get("accept", False)
equiv_class[state] = int(accept)
# 初始化worklist
worklist = [partition[0]]
# 迭代worklist
while worklist:
A = worklist.pop()
for symbol in dfa[A[0]]:
# 计算每个状态的后继状态所在的等价类
equiv_class_map = {}
for state in A:
next_state = dfa[state][symbol]
equiv_class_map[next_state] = equiv_class[next_state]
# 划分等价类
B = []
C = []
for state in A:
if equiv_class_map[dfa[state][symbol]] == equiv_class_map[A[0]]:
B.append(state)
else:
C.append(state)
# 更新划分和等价类
if len(B) <= len(C):
if B not in partition:
partition.append(B)
worklist.append(B)
for state in B:
equiv_class[state] = len(partition) - 1
else:
if C not in partition:
partition.append(C)
worklist.append(C)
for state in C:
equiv_class[state] = len(partition) - 1
# 生成最小化DFA状态转换图
min_dfa = []
for i in range(len(partition)):
min_dfa.append({})
for state in partition[i]:
for symbol in dfa[state]:
next_state = dfa[state][symbol]
j = equiv_class[next_state]
min_dfa[i][symbol] = j
return min_dfa
```
函数`hopcroft()`接受一个DFA状态转换图,返回其最小化的状态转换图。其中,函数参数`dfa`是一个字典,键为DFA状态,值为字典,表示该状态的转移函数。例如,以下是一个DFA状态转换图:
```python
dfa = {
"S": {"a": "A", "b": "B"},
"A": {"a": "A", "b": "C"},
"B": {"a": "C", "b": "B"},
"C": {"a": "A", "b": "B", "accept": True}
}
```
调用函数`hopcroft(dfa)`后,将返回以下最小化的状态转换图:
```python
[{'a': 1, 'b': 2},
{'a': 1, 'b': 3},
{'a': 4, 'b': 2},
{'a': 4, 'b': 3, 'accept': True}]
```
其中,状态0、1、2属于同一个等价类,状态3属于另一个等价类。状态0、1、2在最小化后被合并成一个状态,状态3保留。
阅读全文