上述代码中,我希望把GAT部分修改一下。上述代码并没有体现出计算每个度相同的节点之间的注意力系数,我想通过一个for循环计算度相同节点之间的注意力系数,这该怎么做呢。同时我需要它的输出和MLP的输出维度保持一致
时间: 2024-02-17 15:03:50 浏览: 88
GAT,Graph Attention Network,图注意力网络,PPT资源
如果您希望在GAT部分中计算每个度相同的节点之间的注意力系数,可以按照以下步骤进行修改:
1. 在`forward`函数中,首先计算每个节点的度数`deg`,并将其保存在一个`deg`列表中:
```python
deg = x.size(-2) - 1
deg = torch.arange(1, deg+1, device=x.device)
deg = deg.repeat(x.size(0), 1)
```
2. 接下来,使用一个for循环,计算每个度相同的节点之间的注意力系数:
```python
alpha = []
for d in range(1, x.size(-2)):
mask = (deg == d).unsqueeze(-1).repeat(1, 1, d)
mask = mask & mask.transpose(-2, -1)
alpha_d = torch.matmul(x[:, :, :d], x[:, :, :d].transpose(-2, -1))
alpha_d = alpha_d.masked_fill(~mask, float('-inf'))
alpha_d = F.softmax(alpha_d, dim=-1)
alpha.append(alpha_d)
alpha = torch.cat(alpha, dim=-1)
```
在这个for循环中,我们首先创建一个大小为`(batch_size, num_nodes)`的`deg`张量,其中的元素表示每个节点的度数。然后,对于每个度数`d`,我们创建一个大小为`(batch_size, num_nodes, d)`的掩码张量,其中元素为`True`的位置表示度数为`d`的节点之间的注意力系数。接着,我们计算这些节点之间的点积注意力系数,并在注意力系数张量中填充`float('-inf')`的值以排除不需要的注意力系数。最后,我们使用`softmax`函数对注意力系数进行归一化,并将结果拼接在一起,得到大小为`(batch_size, num_nodes, out_dim)`的注意力系数张量`alpha`。
3. 最后,为了保持注意力系数张量`alpha`的维度与MLP输出的维度一致,我们需要在`forward`函数中添加以下代码:
```python
alpha = F.pad(alpha, [0, 0, 0, 0, 0, mlp_out_dim - alpha.size(-1)])
```
这行代码会向注意力系数张量的最后一个维度上添加零填充,使其与MLP输出的维度一致。
完整的修改后的代码如下所示:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class GATLayer(nn.Module):
def __init__(self, in_dim, out_dim, num_heads):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.W = nn.Linear(in_dim, out_dim * num_heads, bias=False)
self.a = nn.Linear(2 * out_dim, 1, bias=False)
def forward(self, x):
h = self.W(x)
h = h.view(-1, x.size(-2), self.num_heads, self.out_dim)
h = h.transpose(1, 2)
deg = x.size(-2) - 1
deg = torch.arange(1, deg+1, device=x.device)
deg = deg.repeat(x.size(0), 1)
alpha = []
for d in range(1, x.size(-2)):
mask = (deg == d).unsqueeze(-1).repeat(1, 1, d)
mask = mask & mask.transpose(-2, -1)
alpha_d = torch.matmul(x[:, :, :d], x[:, :, :d].transpose(-2, -1))
alpha_d = alpha_d.masked_fill(~mask, float('-inf'))
alpha_d = F.softmax(alpha_d, dim=-1)
alpha.append(alpha_d)
alpha = torch.cat(alpha, dim=-1)
h = h.unsqueeze(-2)
alpha = alpha.unsqueeze(-1)
e = self.a(torch.cat([h, h], dim=-1)).squeeze(-1)
alpha = alpha.masked_fill(~e.bool(), float('-inf'))
alpha = F.softmax(alpha, dim=-2)
alpha = alpha.masked_fill(torch.isnan(alpha), 0)
h = (alpha * h).sum(dim=-2)
h = h.reshape(-1, self.num_heads * self.out_dim)
return h
class GAT(nn.Module):
def __init__(self, in_dim, out_dim, num_layers, num_heads):
super().__init__()
self.layers = nn.ModuleList([
GATLayer(in_dim, out_dim, num_heads) if i == 0 else GATLayer(num_heads * out_dim, out_dim, num_heads)
for i in range(num_layers)
])
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class MLP(nn.Module):
def __init__(self, in_dim, hidden_dim, out_dim):
super().__init__()
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, out_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class GATMLP(nn.Module):
def __init__(self, in_dim, hidden_dim, out_dim, num_layers, num_heads):
super().__init__()
self.gat = GAT(in_dim, hidden_dim, num_layers, num_heads)
self.mlp = MLP(num_heads * hidden_dim, hidden_dim, out_dim)
def forward(self, x):
x = self.gat(x)
x = self.mlp(x)
return x
```
阅读全文