ResUnet代码实现pytorch

时间: 2023-11-05 14:02:56 浏览: 86
抱歉,作为AI语言模型,我无法提供完整的代码实现。但是,以下是一个基于PyTorch实现的ResUNet的代码示例,您可以参考它进行自己的实现。 ``` import torch import torch.nn as nn import torch.nn.functional as F class ResUNet(nn.Module): def __init__(self, in_channels=3, out_channels=1, init_features=32): super(ResUNet, self).__init__() # Initial convolution block self.conv1 = nn.Conv2d(in_channels, init_features, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(init_features) self.relu1 = nn.ReLU(inplace=True) # Residual blocks self.conv2 = nn.Conv2d(init_features, init_features * 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(init_features * 2) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(init_features * 2, init_features * 2, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(init_features * 2) self.relu3 = nn.ReLU(inplace=True) self.conv4 = nn.Conv2d(init_features * 2, init_features * 4, kernel_size=3, stride=2, padding=1, bias=False) self.bn4 = nn.BatchNorm2d(init_features * 4) self.relu4 = nn.ReLU(inplace=True) self.conv5 = nn.Conv2d(init_features * 4, init_features * 4, kernel_size=3, stride=1, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(init_features * 4) self.relu5 = nn.ReLU(inplace=True) self.conv6 = nn.Conv2d(init_features * 4, init_features * 8, kernel_size=3, stride=2, padding=1, bias=False) self.bn6 = nn.BatchNorm2d(init_features * 8) self.relu6 = nn.ReLU(inplace=True) self.conv7 = nn.Conv2d(init_features * 8, init_features * 8, kernel_size=3, stride=1, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(init_features * 8) self.relu7 = nn.ReLU(inplace=True) self.conv8 = nn.Conv2d(init_features * 8, init_features * 16, kernel_size=3, stride=2, padding=1, bias=False) self.bn8 = nn.BatchNorm2d(init_features * 16) self.relu8 = nn.ReLU(inplace=True) self.conv9 = nn.Conv2d(init_features * 16, init_features * 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn9 = nn.BatchNorm2d(init_features * 16) self.relu9 = nn.ReLU(inplace=True) # Upsampling blocks self.upconv1 = nn.ConvTranspose2d(init_features * 16, init_features * 8, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False) self.bn10 = nn.BatchNorm2d(init_features * 8) self.relu10 = nn.ReLU(inplace=True) self.conv10 = nn.Conv2d(init_features * 16, init_features * 8, kernel_size=3, stride=1, padding=1, bias=False) self.bn11 = nn.BatchNorm2d(init_features * 8) self.relu11 = nn.ReLU(inplace=True) self.upconv2 = nn.ConvTranspose2d(init_features * 8, init_features * 4, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False) self.bn12 = nn.BatchNorm2d(init_features * 4) self.relu12 = nn.ReLU(inplace=True) self.conv11 = nn.Conv2d(init_features * 8, init_features * 4, kernel_size=3, stride=1, padding=1, bias=False) self.bn13 = nn.BatchNorm2d(init_features * 4) self.relu13 = nn.ReLU(inplace=True) self.upconv3 = nn.ConvTranspose2d(init_features * 4, init_features * 2, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False) self.bn14 = nn.BatchNorm2d(init_features * 2) self.relu14 = nn.ReLU(inplace=True) self.conv12 = nn.Conv2d(init_features * 4, init_features * 2, kernel_size=3, stride=1, padding=1, bias=False) self.bn15 = nn.BatchNorm2d(init_features * 2) self.relu15 = nn.ReLU(inplace=True) self.upconv4 = nn.ConvTranspose2d(init_features * 2, init_features, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False) self.bn16 = nn.BatchNorm2d(init_features) self.relu16 = nn.ReLU(inplace=True) self.conv13 = nn.Conv2d(init_features * 2, init_features, kernel_size=3, stride=1, padding=1, bias=False) self.bn17 = nn.BatchNorm2d(init_features) self.relu17 = nn.ReLU(inplace=True) # Output layer self.outconv = nn.Conv2d(init_features, out_channels, kernel_size=1, stride=1, padding=0, bias=False) def forward(self, x): # Initial convolution block x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) # Residual blocks x_res1 = x x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) x = x + x_res1 x = self.relu3(x) x_res2 = x x = self.conv4(x) x = self.bn4(x) x = self.relu4(x) x = self.conv5(x) x = self.bn5(x) x = x + x_res2 x = self.relu5(x) x_res3 = x x = self.conv6(x) x = self.bn6(x) x = self.relu6(x) x = self.conv7(x) x = self.bn7(x) x = x + x_res3 x = self.relu7(x) x_res4 = x x = self.conv8(x) x = self.bn8(x) x = self.relu8(x) x = self.conv9(x) x = self.bn9(x) x = x + x_res4 x = self.relu9(x) # Upsampling blocks x = self.upconv1(x) x = self.bn10(x) x = self.relu10(x) x = torch.cat([x, x_res4], dim=1) x = self.conv10(x) x = self.bn11(x) x = self.relu11(x) x = self.upconv2(x) x = self.bn12(x) x = self.relu12(x) x = torch.cat([x, x_res3], dim=1) x = self.conv11(x) x = self.bn13(x) x = self.relu13(x) x = self.upconv3(x) x = self.bn14(x) x = self.relu14(x) x = torch.cat([x, x_res2], dim=1) x = self.conv12(x) x = self.bn15(x) x = self.relu15(x) x = self.upconv4(x) x = self.bn16(x) x = self.relu16(x) x = torch.cat([x, x_res1], dim=1) x = self.conv13(x) x = self.bn17(x) x = self.relu17(x) # Output layer x = self.outconv(x) x = torch.sigmoid(x) return x ```

相关推荐

最新推荐

recommend-type

pytorch之添加BN的实现

今天小编就为大家分享一篇pytorch之添加BN的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch实现LSTM和GRU示例

今天小编就为大家分享一篇Pytorch实现LSTM和GRU示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

利用PyTorch实现VGG16教程

主要介绍了利用PyTorch实现VGG16教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

使用anaconda安装pytorch的实现步骤

主要介绍了使用anaconda安装pytorch的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

pytorch实现mnist分类的示例讲解

今天小编就为大家分享一篇pytorch实现mnist分类的示例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

get() { return this.photoState },

这是一个 JavaScript 中的方法定义,它定义了一个名为 `get` 的方法。这个方法没有参数,它返回了 `this.photoState`。在这个方法中,`this` 是指当前对象,而 `photoState` 是该对象的一个属性。通常情况下,`get` 方法用于获取对象的属性值,并且可以在获取属性值之前进行一些逻辑操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。