多示例学习中对示例特征进行最大池化和均值池化的pytorch代码,不是图像池化
时间: 2023-03-13 19:55:00 浏览: 96
池化操作可以使用PyTorch提供的MaxPool2d和AvgPool2d函数来实现。例如:# Max pooling
max_pool = nn.MaxPool2d(kernel_size=2)
output_max = max_pool(input)# Average pooling
avg_pool = nn.AvgPool2d(kernel_size=2)
output_avg = avg_pool(input)
相关问题
多示例学习中最大池化和均值池化的pytorch代码
多示例学习中最大池化的Pytorch代码:import torchinputs = torch.tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])pooled = torch.nn.MaxPool1d(3, stride=2)(inputs)print(pooled)# Output:
# tensor([[4., 6.],
# [8., 9.]])均值池化的Pytorch代码:import torchinputs = torch.tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])pooled = torch.nn.AvgPool1d(3, stride=2)(inputs)print(pooled)# Output:
# tensor([[2.3333, 4.6667],
# [6.3333, 8.6667]])
pytorch代码,对超像素图像进行超像素池化,并输出超像素特征图
以下是一个使用PyTorch实现超像素池化的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from skimage.segmentation import slic
class SuperPixelPooling(nn.Module):
def __init__(self, n_segments, in_channels):
super(SuperPixelPooling, self).__init__()
self.n_segments = n_segments
self.in_channels = in_channels
def forward(self, x):
# Get the superpixel segmentation of the input image
segments = slic(x, n_segments=self.n_segments, compactness=10)
segments = torch.tensor(segments).unsqueeze(0)
# Calculate the mean value of each superpixel
pooled = torch.zeros((1, self.in_channels, self.n_segments))
for i in range(self.n_segments):
mask = (segments == i).float().unsqueeze(0).repeat(self.in_channels, 1, 1)
pooled[:, :, i] = (x * mask).sum((-1, -2)) / mask.sum((-1, -2))
return pooled.squeeze()
```
这里我们使用了skimage库中的超像素分割算法slic对输入图像进行超像素分割,并计算每个超像素区域的均值作为该超像素的特征表示。最终返回一个形状为(1, in_channels, n_segments)的超像素特征图。
阅读全文