基于resnet的轴承故障检测matlab代码
时间: 2024-04-10 18:26:19 浏览: 131
基于ResNet的轴承故障检测的Matlab代码如下所示[^1]:
```matlab
% 导入数据
load('bearing_dataset.mat');
% 数据预处理
X = permute(data, [2, 3, 4, 1]); % 调整数据维度
Y = categorical(label); % 转换标签为分类变量
% 划分训练集和测试集
[trainInd, valInd, testInd] = dividerand(size(X, 4), 0.7, 0.15, 0.15);
XTrain = X(:, :, :, trainInd);
YTrain = Y(trainInd);
XVal = X(:, :, :, valInd);
YVal = Y(valInd);
XTest = X(:, :, :, testInd);
YTest = Y(testInd);
% 构建ResNet网络
layers = [
imageInputLayer([1000 1 1])
convolution2dLayer(100, 1, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(200, 1, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(400, 1, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(4)
softmaxLayer
classificationLayer];
% 设置训练选项
options = trainingOptions('adam', ...
'MiniBatchSize', 32, ...
'MaxEpochs', 20, ...
'ValidationData', {XVal, YVal}, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 训练网络
net = trainNetwork(XTrain, YTrain, layers, options);
% 在测试集上评估网络性能
YTestPred = classify(net, XTest);
accuracy = sum(YTestPred == YTest) / numel(YTest);
% 显示准确率
disp(['测试集准确率:', num2str(accuracy)]);
```
请注意,上述代码仅为示例,实际使用时需要根据数据集的特点进行相应的调整和优化。
阅读全文