pytorch代码实现神经网络编码器和解码器
时间: 2024-10-16 08:05:23 浏览: 53
在PyTorch中,神经网络的编码器-解码器结构通常用于序列到序列的任务,比如机器翻译或文本生成。以下是基本的实现步骤:
```python
import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):
super(Encoder, self).__init__()
self.embedding = nn.Embedding(input_dim, emb_dim)
self.rnn = nn.LSTM(emb_dim, hid_dim, num_layers=n_layers, dropout=dropout)
def forward(self, src):
embedded = self.embedding(src) # 输入源数据并嵌入
outputs, (hidden, cell) = self.rnn(embedded) # 通过RNN处理并返回隐藏状态和细胞状态
return hidden, cell # 返回最后一个时间步的隐藏状态作为编码结果
class Decoder(nn.Module):
def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout):
super(Decoder, self).__init__()
self.embedding = nn.Embedding(output_dim, emb_dim)
self.rnn = nn.LSTM(emb_dim, hid_dim, num_layers=n_layers, dropout=dropout)
self.fc_out = nn.Linear(hid_dim, output_dim)
def forward(self, trg, encoder_hidden, encoder_cell):
embedded = self.embedding(trg)
# 添加首部开始标记
embedded = torch.cat((embedded[0], embedded), dim=0)
decoder_output, (decoder_hidden, decoder_cell) = self.rnn(embedded, (encoder_hidden, encoder_cell))
# 获取最后一层的解码预测结果
prediction = self.fc_out(decoder_output[-1])
return prediction, decoder_hidden, decoder_cell
# 使用示例
encoder = Encoder(input_dim, emb_dim, hid_dim, n_layers, dropout)
decoder = Decoder(output_dim, emb_dim, hid_dim, n_layers, dropout)
```
在这个例子中,`forward`函数会接收输入序列,经过编码器的嵌入和RNN处理,然后解码器接收到编码后的隐藏状态开始解码。每个模块都有其`forward`函数,用于前向传播计算。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)