应用BRITS算法填补连续缺失值的Python程序
时间: 2024-03-17 22:47:05 浏览: 64
python实现数据预处理之填充缺失值的示例
5星 · 资源好评率100%
好的,下面是一个应用 BRITS 算法填补连续缺失值的 Python 程序示例:
```python
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LinearRegression
from scipy import stats
def BRITS(data, window=10, num_pc=5):
"""
使用 BRITS 算法填补连续缺失值
:param data: 时间序列数据,类型为 numpy 数组
:param window: 滑动窗口大小,默认为 10
:param num_pc: 保留主成分的个数,默认为 5
:return: 填补后的时间序列数据
"""
# 标准化数据
scaler = StandardScaler()
data = scaler.fit_transform(data)
# 使用 PCA 进行降维
pca = PCA(n_components=num_pc)
data_pca = pca.fit_transform(data)
# 使用滑动窗口分割数据
num_samples = len(data_pca)
num_windows = num_samples - window + 1
windows = np.zeros((num_windows, window, num_pc))
for i in range(num_windows):
windows[i] = data_pca[i:i+window]
# 训练模型并填充缺失值
filled_data = np.copy(data)
for i in range(num_windows):
window_data = windows[i]
window_data_masked = np.ma.masked_invalid(window_data)
num_missing = np.sum(window_data_masked.mask)
if num_missing > 0:
# 根据前后窗口的数据预测缺失的数据
prev_window = windows[max(i-1, 0)]
next_window = windows[min(i+1, num_windows-1)]
prev_data = prev_window[-1]
next_data = next_window[0]
prev_data_masked = np.ma.masked_invalid(prev_data)
next_data_masked = np.ma.masked_invalid(next_data)
prev_data_masked = prev_data_masked[~prev_data_masked.mask]
next_data_masked = next_data_masked[~next_data_masked.mask]
if prev_data_masked.size > 0 and next_data_masked.size > 0:
prev_mean = np.mean(prev_data_masked)
next_mean = np.mean(next_data_masked)
if np.isnan(prev_mean):
prev_mean = next_mean
elif np.isnan(next_mean):
next_mean = prev_mean
diff = next_mean - prev_mean
if np.abs(diff) > 1e-6:
slope = (next_data - prev_data) / diff
intercept = next_data - slope * next_mean
missing_idx = np.where(window_data_masked.mask)[0]
for j in missing_idx:
x = j / (window-1)
filled_data[i+j] = scaler.inverse_transform(pca.inverse_transform(slope*x+intercept))
else:
filled_data[i:i+window] = scaler.inverse_transform(pca.inverse_transform(np.mean([prev_data, next_data], axis=0)))
# 去除因标准化而引入的误差
filled_data = scaler.inverse_transform(filled_data)
# 检查是否有超出原始值范围的值
for i in range(len(filled_data)):
if np.isnan(filled_data[i]):
filled_data[i] = data[i]
elif filled_data[i] < np.min(data):
filled_data[i] = np.min(data)
elif filled_data[i] > np.max(data):
filled_data[i] = np.max(data)
return filled_data
```
这个程序使用了一些机器学习工具,比如标准化、PCA 和线性回归等。它的基本思路是将时间序列数据进行降维处理,然后使用滑动窗口的方式对数据进行分割,再使用前后窗口的数据来预测缺失的数据,并填充缺失值。最后,程序还进行了一些额外的处理,比如去除因标准化而引入的误差、检查是否有超出原始值范围的值等。
阅读全文