if ear < EYE_AR_THRESH: 改成大于小于两个条件同时存在
时间: 2024-02-09 14:10:08 浏览: 70
你可以使用逻辑运算符 "and" 来将两个条件同时结合起来,从而达到同时存在的效果,如下所示:
```
if ear < EYE_AR_THRESH and mouth_opened:
```
这个条件语句表示当 ear 小于 EYE_AR_THRESH 并且 mouth_opened 的值为 True 时,执行条件语句后面的代码块。注意,mouth_opened 是一个表示嘴巴是否张开的变量,需要提前定义并赋值。
相关问题
if ear < eye_ar_thresh: counter += 1 if counter >= eye_ar_consec_frames: cv2.putText(frame, "Fatigue Detected!", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) if mar > mouth_ar_thresh: counter = counter cv2.putText(frame, "Yawning detected!", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) else: counter = 0改进以上代码使得可以同时显示“Fatigue Detected"和"Yawning detectected"”
可以将两个判断条件合并到一起,如下所示:
```
if ear < eye_ar_thresh:
counter += 1
if counter >= eye_ar_consec_frames:
cv2.putText(frame, "Fatigue Detected!", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
if mar > mouth_ar_thresh:
cv2.putText(frame, "Yawning detected!", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
counter = 0
```
这样,如果眼睛和嘴巴都符合条件,就会同时在画面上显示“Fatigue Detected"和"Yawning detectected"。如果只有一个符合条件,就只会显示相应的提示。如果都不符合条件,就不会有任何提示。
python疲劳检测代码
引用中提到了基于Percols算法的疲劳检测,但是并没有给出具体的代码实现。因此,以下是一份基于OpenCV和dlib库的Python疲劳检测代码实现:
```
import cv2
import dlib
import numpy as np
from scipy.spatial import distance as dist
# 定义常量
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 48
# 初始化dlib的人脸检测器和关键点检测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# 计算两个眼睛的EAR值
def eye_aspect_ratio(eye):
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
C = dist.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
# 初始化EAR值和连续帧数
ear = 0
frame_count = 0
# 打开本地摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取视频帧
ret, frame = cap.read()
# 转换为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检测人脸
rects = detector(gray, 0)
# 遍历检测到的人脸
for rect in rects:
# 检测关键点
shape = predictor(gray, rect)
shape = np.array([(shape.part(i).x, shape.part(i).y) for i in range(68)])
# 计算左眼和右眼的EAR值
left_eye = shape[36:42]
right_eye = shape[42:48]
left_ear = eye_aspect_ratio(left_eye)
right_ear = eye_aspect_ratio(right_eye)
# 计算平均EAR值
ear = (left_ear + right_ear) / 2.0
# 绘制眼睛区域
cv2.drawContours(frame, [cv2.convexHull(left_eye)], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [cv2.convexHull(right_eye)], -1, (0, 255, 0), 1)
# 判断是否疲劳
if ear < EYE_AR_THRESH:
frame_count += 1
if frame_count >= EYE_AR_CONSEC_FRAMES:
cv2.putText(frame, "Fatigue Detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
frame_count = 0
# 绘制EAR值
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# 显示视频帧
cv2.imshow("Frame", frame)
# 按下q键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()
```
该代码使用了dlib库进行人脸检测和关键点检测,使用了OpenCV库进行图像处理和显示。通过计算眼睛的EAR值来判断是否疲劳,并在视频帧中绘制眼睛区域和EAR值。
阅读全文