解释下列代码# Logistic Regression 逻辑回归模型 logreg = LogisticRegression() logreg.fit(dataTrain , yLabels_log.astype('int')) Y_pred_logreg = logreg.predict(dataTrain) acc_log = round(logreg.score(dataTrain , yLabels_log.astype('int'))*100,2) # 预测结果 Y_pred_logreg.shape Y_pred_logreg Y_pred_logreg = logreg.predict(dataTest) Y_pred_logreg.shape Y_pred_logreg submission2=pd.DataFrame({'datetime':datetimecol , 'count':[max(0,x) for x in np.exp(Y_pred_logreg)]}) submission2.head()

时间: 2024-04-01 19:34:43 浏览: 12
这段代码是使用 Logistic Regression(逻辑回归)模型对数据进行训练和预测,并生成一个提交文件。具体解释如下: 1. 创建一个 LogisticRegression() 对象,即逻辑回归模型。 2. 使用训练数据 dataTrain 和标签 yLabels_log 进行训练,其中 yLabels_log 被强制转换为整数类型。 3. 对训练数据进行预测,得到预测结果 Y_pred_logreg。 4. 计算模型的准确率 acc_log,将值保留两位小数。 5. 查看预测结果的形状 Y_pred_logreg.shape,即预测结果的行数和列数。 6. 对测试数据 dataTest 进行预测,得到预测结果 Y_pred_logreg。 7. 查看预测结果的形状 Y_pred_logreg.shape,即预测结果的行数和列数。 8. 创建一个 DataFrame 对象 submission2,其中包含两列:datetime 和 count。其中,datetime 列来自 datetimecol,即测试数据中的日期时间列;count 列是预测结果 Y_pred_logreg 经过指数函数 np.exp() 处理后的结果,同时将小于 0 的数值设置为 0。 9. 查看 submission2 的前几行数据,即使用 head() 方法。
相关问题

请指出下列python代码的错误并改正。from sklearn.metrics import confusion_matrix from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression kf = KFold(n_splits=3) accuracy_rate=[] cm=[] for train_index, test_index in kf.split(data): dataX_train = x[train_index] dataX_test=x[test_index] dataY_train = y[train_index] dataY_test=y[test_index] model = LogisticRegression() model.fit(dataX_train, dataY_train.astype('int')) # print(model.predict(dataX_test)) # print(dataY_test.tolist()) accuracy_rate.append(sum(model.predict(dataX_test)==dataY_test.tolist())/len(dataY_test)) cm.append(confusion_matrix(y_true=dataY_test, y_pred=model.predict(dataX_test)).T)

这段代码缺少了要导入的库和相关数据。需要根据具体情况添加和修改代码。另外,在定义 model 时需要加上缩进。 修改后的代码如下: ``` import numpy as np from sklearn.metrics import confusion_matrix from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression data = np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]) x = data[:,0:1] y = data[:,1] kf = KFold(n_splits=3) accuracy_rate=[] cm=[] for train_index, test_index in kf.split(data): dataX_train = x[train_index] dataX_test = x[test_index] dataY_train = y[train_index] dataY_test = y[test_index] model = LogisticRegression() model.fit(dataX_train, dataY_train.astype('int')) ```

import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier df = pd.read_excel('C:/Users/Lenovo、、、、王煜欣/Desktop/newas.xlsx') df.head() print(df.head()) df['Gender'].replace(to_replace={'Female':0,'Male':1},inplace=True) df['Geography'].replace(to_replace={'France':0,'Spain':2,'Germany':1},inplace=True) df['Card Type'].replace(to_replace={'青铜':0,'白银':1,'黄金':2,'钻石':3},inplace=True) X = df[['AUM_before','AUM_now','rate','CreditScore','Gender','Age','Tenure','Balance','NumOfProducts','HasCrCard']].values y = df['existed'].values X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42) knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train,y_train) print('knn模型准确率:', knn.score(X_test,y_test)) #逻辑回归 from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler import features as feature lr = LogisticRegression() features_encoded = pd.get_dummies(feature) scaler = StandardScaler() features_temp = scaler.fit_transform(features_encoded) lr.fit(X_train, y_train) print('逻辑回归模型准确率:', lr.score(X_test, y_test)) #shap import shap as sh explainer = sh.Explainer(model=lr) shap_values = explainer(X_train) sh.plots.force(shap_values[0])

这段代码主要是关于机器学习中的数据预处理和建模部分。它包括了数据读取、数据预处理、模型训练和模型评估等步骤。 首先,代码使用pandas库读取了一个名为'newas.xlsx'的Excel文件中的数据,并打印出前几行的数据。 然后,对一些特征进行了替换操作,将'Gender'特征中的'Female'替换为0,'Male'替换为1;将'Geography'特征中的'France'替换为0,'Spain'替换为2,'Germany'替换为1;将'Card Type'特征中的'青铜'替换为0,'白银'替换为1,'黄金'替换为2,'钻石'替换为3。 接下来,将特征和标签分别赋值给变量X和y,并使用train_test_split函数将数据集划分为训练集和测试集。 然后,使用KNeighborsClassifier算法构建了一个K近邻分类器模型,并使用训练集进行训练,最后打印出模型在测试集上的准确率。 接着,使用LogisticRegression算法构建了一个逻辑回归模型。在构建模型之前,对特征进行了编码操作,并使用StandardScaler对编码后的特征进行标准化处理。然后使用训练集进行训练,并打印出模型在测试集上的准确率。 最后,使用shap库进行模型解释,构建了一个解释器explainer,然后计算出了shap值,并绘制了一个shap force图。 请问有什么我可以帮助到您的吗?

相关推荐

请检查这段代码有没有错误 import pandas as pd from pyecharts.charts import * from sklearn.linear_model import LogisticRegression data = pd.read_csv('双色球.csv',encoding='utf-8', engine='python') data.head() for i in range(0,6): data[f'r{i+1}'] = data['红球'].apply(lambda x:x.split(',')[i]) data[f'r{i+1}'] = data[f'r{i+1}'].astype('int64') def get_lotto_data(data, lotto, lotto_id): #取数据,指定训练集和测试集 data['lotto_id'] = lotto_id X = [] Y = [] # 标签and值 for s, p in zip(data['lotto_id'], data[lotto]): X.append([float(s)]) Y.append(float(p)) return X, Y def linear_model_test(X, Y, predict_value): #建立线性回归模型 regr = LogisticRegression() regr.fit(X, Y) predict_outcome = regr.predict(predict_value) predictions = {} predictions['intercept'] = regr.intercept_ predictions['coefficient'] = regr.coef_ predictions['predicted_value'] = predict_outcome return predictions def get_predicted_num(file, lotto, lotto_id): #使用线性回归推测中奖号码 X, Y = get_lotto_data(file, lotto, lotto_id) predict_value = [[33]] result = linear_model_test(X, Y, predict_value) if lotto_id < 7: print(f'中奖第{lotto_id}个红球为:', result['predicted_value'].astype('int64'), '号球') else: print('中奖蓝球为:', result['predicted_value'].astype('int64'), '号球') get_predicted_num(data, 'r1', 1) # 预测红1 get_predicted_num(data, 'r2', 2) # 预测红2 get_predicted_num(data, 'r3', 3) # 预测红3 get_predicted_num(data, 'r4', 4) # 预测红4 get_predicted_num(data, 'r5', 5) # 预测红5 get_predicted_num(data, 'r6', 6) # 预测红6 get_predicted_num(data, '蓝球', 7) # 预测蓝7

import numpy as np import xlrd import matplotlib.pyplot as plt from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score def excel2m(path):#读excel数据转为矩阵函数 data = xlrd.open_workbook(path) table = data.sheets()[0] # 获取excel中第一个sheet表 nrows = table.nrows # 行数 ncols = table.ncols # 列数 datamatrix = np.zeros((nrows, ncols)) for x in range(ncols): cols = table.col_values(x) cols1 = np.matrix(cols) # 把list转换为矩阵进行矩阵操作 datamatrix[:, x] = cols1 # 把数据进行存储 return datamatrix x=excel2m("factors.xlsx") x=np.matrix(x) y=excel2m("RON.xlsx") y=np.matrix(y) rfc=RandomForestClassifier(n_estimators=10,random_state=0) score=[] for i in range(1,200,10): rfe = RFE(estimator=rfc, n_features_to_select=i, step=10).fit(x, y.astype('int')) rfe.support_.sum() rfe.ranking_ x_wrapper=rfe.transform(x) once=cross_val_score(rfc,x_wrapper,y.astype('int'),cv=5).mean() score.append(once) plt.figure(figsize=[20,5]) plt.plot(range(1,200,10),score) plt.xticks(range(1,200,10)) plt.show() np.savetxt('score.csv', score, delimiter = ',') # 确定选择特征数量后,看各个特征得分排名 # 每个特征的得分排名,特征得分越低(1最好),表示特征越好 #print(rfe.ranking_) #np.savetxt('ranking.csv', rfe.ranking_, delimiter = ',') # 每次交叉迭代各个特征得分 #print(rfe.grid_scores_) #np.savetxt('grid_scores.csv', rfe.grid_scores_, delimiter = ',')

#target一共9个类别。由于是字符型,定义一个函数将target的类别标签转为index表示,方便后面计算交叉熵 def target2idx(targets): target_idx = [] target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10'] for target in targets: target_idx.append(target_labels.index(target)) return target_idx #向量转化函数(提供参考,自行选择是否使用) def convert_to_vectors(c): m = len(c) k = np.max(c) + 1 y = np.zeros(m * k).reshape(m,k) for i in range(m): y[i][c[i]] = 1 return y #特征处理函数(提供参考,自行选择是否使用) def process_features(X): scaler = MinMaxScaler(feature_range=(0,1)) X = scaler.fit_transform(1.0*X) m, n = X.shape X = np.c_[np.ones((m, 1)), X] return X数据获取样例,可自行处理 X = np.array(data)[:,1:-1].astype(float) c = target2idx(data['target']) y = convert_to_vectors(c) #划分训练集和测试集比例在0.1-0.9之间 X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2)#模型训练及预测#计算指标,本指标使用加权的方式计算多分类问题,accuracy和recall相等,可将其原因写入报告 accuracy = accuracy_score(c_test, c_pred) precision = precision_score(c_test, c_pred,average = 'weighted') recall = recall_score(c_test, c_pred,average = 'weighted') f1 = f1_score(c_test, c_pred,average = 'weighted') print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1))补全代码

最新推荐

recommend-type

基于Python的蓝桥杯竞赛平台的设计与实现

【作品名称】:基于Python的蓝桥杯竞赛平台的设计与实现 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于Python的蓝桥杯竞赛平台的设计与实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。