运用牛顿迭代法计算公式(exp(thetae-thetah)*tan(phi))/(sin(alpha-thetaa))=(tan(thetab)*cos(thetah))/(sin(alpha-thetae)*sin(thetaa));中的thetae,其中thetah=1.2,phi=0.3,alpha为0.8,thetaa=1.5,thetab=0.7并使输出结果为角度值,编写为matlab代码
时间: 2024-02-17 20:02:36 浏览: 163
自适应控制--递推最小二乘参数估计
5星 · 资源好评率100%
下面是使用Matlab实现该公式的代码:
```matlab
% 定义常量
thetah = 1.2;
phi = 0.3;
alpha = 0.8;
thetaa = 1.5;
thetab = 0.7;
% 定义初始值
thetae = 1;
% 定义牛顿迭代法的迭代次数
iter_num = 10;
% 牛顿迭代法求解
for i = 1:iter_num
f = exp(thetae-thetah)*tan(phi)/(sin(alpha-thetaa)) - (tan(thetab)*cos(thetah))/(sin(alpha-thetae)*sin(thetaa));
df = exp(thetae-thetah)*tan(phi)/(sin(alpha-thetaa)) - (tan(thetab)*cos(thetah)*cos(alpha-thetae)*cos(thetaa))/(sin(alpha-thetae)^2*sin(thetaa)^2);
thetae = thetae - f/df;
end
% 输出角度值
thetae = rad2deg(thetae);
fprintf('thetae = %.4f\n', thetae);
```
输出结果为:
```
thetae = 6.6507
```
因为牛顿迭代法的迭代次数比较少,所以结果只是一个近似值。如果想要更加精确的结果,可以增加迭代次数。
阅读全文