给定两个字符串a,b,以及从a到b的一个编辑路径p,求出在编辑路径p上:
时间: 2024-02-26 18:52:36 浏览: 79
编辑路径p指的是从字符串a通过一系列的插入、删除和替换操作转化为字符串b的过程。如果在编辑路径p上,我们需要找到以下信息:
1. 执行了多少次插入操作;
2. 执行了多少次删除操作;
3. 执行了多少次替换操作;
4. 编辑路径p的长度是多少。
要求这些信息,可以按照编辑路径p上的操作依次遍历,记录每一次操作的类型,并统计其出现的次数。具体来说:
1. 执行插入操作的类型为(i, j, c),表示在字符串a的第i个位置后插入字符c,j表示插入后字符串a的下一个位置;
2. 执行删除操作的类型为(i, j),表示删除字符串a的第i个位置的字符,j表示删除后字符串a的下一个位置;
3. 执行替换操作的类型为(i, j, c),表示将字符串a的第i个位置的字符替换为c,j表示替换后字符串a的下一个位置。
遍历编辑路径p,记录每个操作的类型和出现次数即可得到上述信息。编辑路径p的长度则等于路径上所有操作的数量之和。
相关问题
用C语言编程,基于Dijsktra算法的最短路径求解 描述:一张地图包括n个城市,假设城市间有m条路径(有向图),每条路径的长度已知。给定地图的一个起点城市和终点城市,利用Dijsktra算法求出起点到终点之间的最短路径。 输入:多组数据,每组数据有m+3行。第一行为两个整数n和m,分别代表城市个数n和路径条数m。第二行有n个字符,代表每个城市的名字。第三行到第m+2行每行有两个字符a和b和一个整数d,代表从城市a到城市b有一条距离为d的路。最后一行为两个字符,代表待求最短路径的城市起点和终点。当n和m都等于0时,输入结束。 输出:每组数据输出两行。第一行为一个整数,为从起点到终点之间最短路的长度。第二行为一串字符串,代表该路径。每两个字符之间用空格隔开。
以下是基于Dijsktra算法的最短路径求解的C语言代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXN 1001
#define INF 0x3f3f3f3f
int n, m;
int graph[MAXN][MAXN];
char city[MAXN][3];
int dijkstra(int start, int end, int *path)
{
int i, j, k;
int dist[MAXN], visited[MAXN], prev[MAXN];
memset(visited, 0, sizeof(visited));
memset(dist, INF, sizeof(dist));
memset(prev, -1, sizeof(prev));
for(i = 1; i <= n; i++) {
dist[i] = graph[start][i];
if(dist[i] < INF) prev[i] = start;
}
visited[start] = 1;
for(i = 2; i <= n; i++) {
int minDist = INF;
for(j = 1; j <= n; j++) {
if(!visited[j] && dist[j] < minDist) {
k = j;
minDist = dist[j];
}
}
visited[k] = 1;
if(k == end) break;
for(j = 1; j <= n; j++) {
if(!visited[j] && dist[k]+graph[k][j] < dist[j]) {
dist[j] = dist[k] + graph[k][j];
prev[j] = k;
}
}
}
if(prev[end] == -1) return INF;
int count = 0;
path[count++] = end;
while(prev[path[count-1]] != -1) {
path[count++] = prev[path[count-1]];
}
for(i = 0; i < count/2; i++) {
int temp = path[i];
path[i] = path[count-i-1];
path[count-i-1] = temp;
}
return dist[end];
}
int main()
{
while(1) {
scanf("%d %d", &n, &m);
if(n == 0 && m == 0) break;
int i, j;
memset(graph, INF, sizeof(graph));
for(i = 1; i <= n; i++) {
scanf("%s", city[i]);
graph[i][i] = 0;
}
for(i = 1; i <= m; i++) {
char a[3], b[3];
int d;
scanf("%s %s %d", a, b, &d);
for(j = 1; j <= n; j++) {
if(strcmp(a, city[j]) == 0) break;
}
int x = j;
for(j = 1; j <= n; j++) {
if(strcmp(b, city[j]) == 0) break;
}
int y = j;
if(d < graph[x][y]) graph[x][y] = d;
}
char startCity[3], endCity[3];
scanf("%s %s", startCity, endCity);
int start, end;
for(i = 1; i <= n; i++) {
if(strcmp(startCity, city[i]) == 0) start = i;
if(strcmp(endCity, city[i]) == 0) end = i;
}
int path[MAXN], len = dijkstra(start, end, path);
if(len == INF) printf("From %s to %s: No path\n", startCity, endCity);
else {
printf("From %s to %s: %d\n", startCity, endCity, len);
printf("%s", city[path[0]]);
for(i = 1; i < len; i++) printf(" %s", city[path[i]]);
printf("\n");
}
}
return 0;
}
```
输入数据的格式为:
```
n m
city1 city2 ... cityn
a1 b1 d1
a2 b2 d2
...
am bm dm
startCity endCity
```
输出数据的格式为:
```
From startCity to endCity: len
path
```
其中,`len`为从起点到终点的最短距离,`path`为最短路径上的城市名字。如果不存在路径,则输出`No path`。
问题描述 一张地图包括 n 个城市,假设城市间有 m 条路径(有向图),每条路径的长度已知。给定地图的一个起点城市和终点城市,利用 Diisktra算法求出起点到终点之间的最短路径。 输出要求 多组数据,每组数据有 m+3行。第一行为两个整数n和m分别代表城市个数和路径条数m。第二行有n个字符,代表每个城市的名字。第三行到第m+2行每行有两个字符a和b和一个整数 d,代表从城市a到城市b有一条距离为d的路。最后一行为两个字符,代表待求最短路径的城市起点和终点。当n和m都等于0时,输人结束。 输出要求 每组数据输出2行。第1行为一个整数,为从起点到终点之间最短路的长度。第 2行为一串字符串,代表该路径。每两个字符之间用空格隔开。 输入样例 3 3 A B C A B 1 B C 1 C A 3 A C 6 8 A B C D E F A F 1000 A E 10 B C 5 C D 50 D E 20 E F 60 D F 10 A F 0 0使用c语言,写出完整代码和注释,并针对核心算法函数分析时间和空间复杂度
算法分析:
Dijkstra算法是一种贪心算法,用于解决单源最短路径问题。其基本思想是从起点开始,每次选择当前最短路径的顶点作为中转点进行扩展,直到扩展到终点为止。Dijkstra算法可以求出任意两点之间的最短路径,但其无法处理边权值为负数的情况。
时间复杂度分析:
Dijkstra算法的时间复杂度取决于如何实现优先队列。在本题中,我们可以使用堆来实现优先队列,此时Dijkstra算法的时间复杂度为O(mlogn),其中m为边数,n为顶点数。
空间复杂度分析:
Dijkstra算法需要使用一个数组来保存每个顶点到起点的距离,一个数组来保存每个顶点是否已被访问过,以及一个优先队列。因此,Dijkstra算法的空间复杂度为O(n+m)。
代码实现:
阅读全文