编写五子棋的完整python代码_python实现五子棋程序

时间: 2024-03-02 12:24:28 浏览: 23
以下是一个简单的 Python 五子棋游戏代码,使用了 Pygame 模块。 ```python import pygame import sys import numpy as np # 初始化 Pygame pygame.init() # 设置窗口尺寸 WIDTH = 640 HEIGHT = 640 # 设置棋盘尺寸 BOARD_SIZE = 15 CELL_SIZE = int(WIDTH / BOARD_SIZE) # 设置颜色 BLACK = (0, 0, 0) WHITE = (255, 255, 255) GRAY = (128, 128, 128) # 创建窗口 screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption('五子棋') # 创建棋盘 board = np.zeros((BOARD_SIZE, BOARD_SIZE)) # 判断是否有五子连珠 def is_win(player): for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == player: # 判断横向是否有五个相同棋子 if j + 4 < BOARD_SIZE and board[i][j+1] == player and board[i][j+2] == player and board[i][j+3] == player and board[i][j+4] == player: return True # 判断纵向是否有五个相同棋子 if i + 4 < BOARD_SIZE and board[i+1][j] == player and board[i+2][j] == player and board[i+3][j] == player and board[i+4][j] == player: return True # 判断左上到右下是否有五个相同棋子 if i + 4 < BOARD_SIZE and j + 4 < BOARD_SIZE and board[i+1][j+1] == player and board[i+2][j+2] == player and board[i+3][j+3] == player and board[i+4][j+4] == player: return True # 判断右上到左下是否有五个相同棋子 if i + 4 < BOARD_SIZE and j - 4 >= 0 and board[i+1][j-1] == player and board[i+2][j-2] == player and board[i+3][j-3] == player and board[i+4][j-4] == player: return True return False # 画棋盘 def draw_board(): # 填充背景色 screen.fill(GRAY) # 画横线 for i in range(BOARD_SIZE): pygame.draw.line(screen, BLACK, (0, i * CELL_SIZE), (WIDTH, i * CELL_SIZE), 2) # 画竖线 for j in range(BOARD_SIZE): pygame.draw.line(screen, BLACK, (j * CELL_SIZE, 0), (j * CELL_SIZE, HEIGHT), 2) # 画棋子 def draw_piece(i, j, player): center = ((j * CELL_SIZE) + CELL_SIZE // 2, (i * CELL_SIZE) + CELL_SIZE // 2) if player == 1: pygame.draw.circle(screen, BLACK, center, CELL_SIZE // 2 - 2) else: pygame.draw.circle(screen, WHITE, center, CELL_SIZE // 2 - 2) # 游戏主循环 def main(): # 当前玩家 current_player = 1 while True: # 处理事件 for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.MOUSEBUTTONDOWN: x, y = pygame.mouse.get_pos() i = y // CELL_SIZE j = x // CELL_SIZE if board[i][j] == 0: board[i][j] = current_player draw_piece(i, j, current_player) if is_win(current_player): print('玩家 %d 获胜!' % current_player) pygame.quit() sys.exit() current_player = 3 - current_player # 画棋盘和棋子 draw_board() for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] != 0: draw_piece(i, j, board[i][j]) # 更新屏幕 pygame.display.update() # 运行游戏 if __name__ == '__main__': main() ``` 这是一个简单的五子棋游戏,只实现了基本的操作和判断胜负。你可以根据自己的需求进行修改和扩展。

相关推荐

text/x-c
#include <stdio.h> #include <bios.h> #include <ctype.h> #include <conio.h> #include <dos.h> #define CROSSRU 0xbf /*右上角点*/ #define CROSSLU 0xda /*左上角点*/ #define CROSSLD 0xc0 /*左下角点*/ #define CROSSRD 0xd9 /*右下角点*/ #define CROSSL 0xc3 /*左边*/ #define CROSSR 0xb4 /*右边*/ #define CROSSU 0xc2 /*上边*/ #define CROSSD 0xc1 /*下边*/ #define CROSS 0xc5 /*十字交叉点*/ /*定义棋盘左上角点在屏幕上的位置*/ #define MAPXOFT 5 #define MAPYOFT 2 /*定义1号玩家的操作键键码*/ #define PLAY1UP 0x1157/*上移--'W'*/ #define PLAY1DOWN 0x1f53/*下移--'S'*/ #define PLAY1LEFT 0x1e41/*左移--'A'*/ #define PLAY1RIGHT 0x2044/*右移--'D'*/ #define PLAY1DO 0x3920/*落子--空格键*/ /*定义2号玩家的操作键键码*/ #define PLAY2UP 0x4800/*上移--方向键up*/ #define PLAY2DOWN 0x5000/*下移--方向键down*/ #define PLAY2LEFT 0x4b00/*左移--方向键left*/ #define PLAY2RIGHT 0x4d00/*右移--方向键right*/ #define PLAY2DO 0x1c0d/*落子--回车键Enter*/ /*若想在游戏中途退出, 可按 Esc 键*/ #define ESCAPE 0x011b /*定义棋盘上交叉点的状态, 即该点有无棋子 */ /*若有棋子, 还应能指出是哪个玩家的棋子 */ #define CHESSNULL 0 /*没有棋子*/ #define CHESS1 'O'/*一号玩家的棋子*/ #define CHESS2 'X'/*二号玩家的棋子*/ /*定义按键类别*/ #define KEYEXIT 0/*退出键*/ #define KEYFALLCHESS 1/*落子键*/ #define KEYMOVECURSOR 2/*光标移动键*/ #define KEYINVALID 3/*无效键*/ /*定义符号常量: 真, 假 --- 真为1, 假为0 */ #define TRUE 1 #define FALSE 0 /**********************************************************/ /* 定义数据结构 */ /*棋盘交叉点坐标的数据结构*/ struct point { int x,y; }; /**********************************************************/ /*自定义函数原型说明 */ void Init(void); int GetKey(void); int CheckKey(int press); int ChangeOrder(void); int ChessGo(int Order,struct point Cursor); void DoError(void); void DoOK(void); void DoWin(int Order); void MoveCursor(int Order,int press); void DrawCross(int x,int y); void DrawMap(void); int JudgeWin(int Order,struct point Cursor); int JudgeWinLine(int Order,struct point Cursor,int direction); void ShowOrderMsg(int Order); void EndGame(void); /**********************************************************/ /**********************************************************/ /* 定义全局变量 */ int gPlayOrder; /*指示当前行棋方 */ struct point gCursor; /*光标在棋盘上的位置 */ char gChessBoard[19][19];/*用于记录棋盘上各点的状态*/ /**********************************************************/ /**********************************************************/ /*主函数*/ void main() { int press; int bOutWhile=FALSE;/*退出循环标志*/ Init();/*初始化图象,数据*/ while(1) { press=GetKey();/*获取用户的按键值*/ switch(CheckKey(press))/*判断按键类别*/ { /*是退出键*/ case KEYEXIT: clrscr();/*清屏*/ bOutWhile = TRUE; break; /*是落子键*/ case KEYFALLCHESS: if(ChessGo(gPlayOrder,gCursor)==FALSE)/*走棋*/ DoError();/*落子错误*/ else { DoOK();/*落子正确*/ /*如果当前行棋方赢棋*/ if(JudgeWin(gPlayOrder,gCursor)==TRUE) { DoWin(gPlayOrder); bOutWhile = TRUE;/*退出循环标志置为真*/ } /*否则*/ else /*交换行棋方*/ ChangeOrder(); ShowOrderMsg(gPlayOrder); } break; /*是光标移动键*/ case KEYMOVECURSOR: MoveCursor(gPlayOrder,press); break; /*是无效键*/ case KEYINVALID: break; } if(bOutWhile==TRUE) break; } /*游戏结束*/ EndGame(); } /**********************************************************/ /*界面初始化,数据初始化*/ void Init(void) { int i,j; char *Msg[]= { "Player1 key:", " UP----w", " DOWN--s", " LEFT--a", " RIGHT-d", " DO----space", "", "Player2 key:", " UP----up", " DOWN--down", " LEFT--left", " RIGHT-right", " DO----ENTER", "", "exit game:", " ESC", NULL, }; /* 先手方为1号玩家 */ gPlayOrder = CHESS1; /* 棋盘数据清零, 即棋盘上各点开始的时候都没有棋子 */ for(i=0;i<19;i++) for(j=0;j<19;j++) gChessBoard[i][j]=CHESSNULL; /*光标初始位置*/ gCursor.x=gCursor.y=0; /*画棋盘*/ textmode(C40); DrawMap(); /*显示操作键说明*/ i=0; textcolor(BROWN); while(Msg[i]!=NULL) { gotoxy(25,3+i); cputs(Msg[i]); i++; } /*显示当前行棋方*/ ShowOrderMsg(gPlayOrder); /*光标移至棋盘的左上角点处*/ gotoxy(gCursor.x+MAPXOFT,gCursor.y+MAPYOFT); } /*画棋盘*/ void DrawMap(void) { int i,j; clrscr(); for(i=0;i<19;i++) for(j=0;j<19;j++) DrawCross(i,j); } /*画棋盘上的交叉点*/ void DrawCross(int x,int y) { gotoxy(x+MAPXOFT,y+MAPYOFT); /*交叉点上是一号玩家的棋子*/ if(gChessBoard[x][y]==CHESS1) { textcolor(LIGHTBLUE); putch(CHESS1); return; } /*交叉点上是二号玩家的棋子*/ if(gChessBoard[x][y]==CHESS2) { textcolor(LIGHTBLUE); putch(CHESS2); return; } textcolor(GREEN); /*左上角交叉点*/ if(x==0&&y==0) { putch(CROSSLU); return; } /*左下角交叉点*/ if(x==0&&y==18) { putch(CROSSLD); return; } /*右上角交叉点*/ if(x==18&&y==0) { putch(CROSSRU); return; } /*右下角交叉点*/ if(x==18&&y==18) { putch(CROSSRD); return; } /*左边界交叉点*/ if(x==0) { putch(CROSSL); return; } /*右边界交叉点*/ if(x==18) { putch(CROSSR); return; } /*上边界交叉点*/ if(y==0) { putch(CROSSU); return; } /*下边界交叉点*/ if(y==18) { putch(CROSSD); return; } /*棋盘中间的交叉点*/ putch(CROSS); } /*交换行棋方*/ int ChangeOrder(void) { if(gPlayOrder==CHESS1) gPlayOrder=CHESS2; else gPlayOrder=CHESS1; return(gPlayOrder); } /*获取按键值*/ int GetKey(void) { char lowbyte; int press; while (bioskey(1) == 0) ;/*如果用户没有按键,空循环*/ press=bioskey(0); lowbyte=press&0xff; press=press&0xff00 + toupper(lowbyte); return(press); } /*落子错误处理*/ void DoError(void) { sound(1200); delay(50); nosound(); } /*赢棋处理*/ void DoWin(int Order) { sound(1500);delay(100); sound(0); delay(50); sound(800); delay(100); sound(0); delay(50); sound(1500);delay(100); sound(0); delay(50); sound(800); delay(100); sound(0); delay(50); nosound(); textcolor(RED+BLINK); gotoxy(25,20); if(Order==CHESS1) cputs("PLAYER1 WIN!"); else cputs("PLAYER2 WIN!"); gotoxy(25,21); cputs("\n"); getch(); } /*走棋*/ int ChessGo(int Order,struct point Cursor) { /*判断交叉点上有无棋子*/ if(gChessBoard[Cursor.x][Cursor.y]==CHESSNULL) { /*若没有棋子, 则可以落子*/ gotoxy(Cursor.x+MAPXOFT,Cursor.y+MAPYOFT); textcolor(LIGHTBLUE); putch(Order); gotoxy(Cursor.x+MAPXOFT,Cursor.y+MAPYOFT); gChessBoard[Cursor.x][Cursor.y]=Order; return TRUE; } else return FALSE; } /*判断当前行棋方落子后是否赢棋*/ int JudgeWin(int Order,struct point Cursor) { int i; for(i=0;i<4;i++) /*判断在指定方向上是否有连续5个行棋方的棋子*/ if(JudgeWinLine(Order,Cursor,i)) return TRUE; return FALSE; } /*判断在指定方向上是否有连续5个行棋方的棋子*/ int JudgeWinLine(int Order,struct point Cursor,int direction) { int i; struct point pos,dpos; const int testnum = 5; int count; switch(direction) { case 0:/*在水平方向*/ pos.x=Cursor.x-(testnum-1); pos.y=Cursor.y; dpos.x=1; dpos.y=0; break; case 1:/*在垂直方向*/ pos.x=Cursor.x; pos.y=Cursor.y-(testnum-1); dpos.x=0; dpos.y=1; break; case 2:/*在左下至右上的斜方向*/ pos.x=Cursor.x-(testnum-1); pos.y=Cursor.y+(testnum-1); dpos.x=1; dpos.y=-1; break; case 3:/*在左上至右下的斜方向*/ pos.x=Cursor.x-(testnum-1); pos.y=Cursor.y-(testnum-1); dpos.x=1; dpos.y=1; break; } count=0; for(i=0;i<testnum*2+1;i++)/*????????i<testnum*2-1*/ { if(pos.x>=0&&pos.x<=18&&pos.y>=0&&pos.y<=18) { if(gChessBoard[pos.x][pos.y]==Order) { count++; if(count>=testnum) return TRUE; } else count=0; } pos.x+=dpos.x; pos.y+=dpos.y; } return FALSE; } /*移动光标*/ void MoveCursor(int Order,int press) { switch(press) { case PLAY1UP: if(Order==CHESS1&&gCursor.y>0) gCursor.y--; break; case PLAY1DOWN: if(Order==CHESS1&&gCursor.y<18) gCursor.y++; break; case PLAY1LEFT: if(Order==CHESS1&&gCursor.x>0) gCursor.x--; break; case PLAY1RIGHT: if(Order==CHESS1&&gCursor.x<18) gCursor.x++; break; case PLAY2UP: if(Order==CHESS2&&gCursor.y>0) gCursor.y--; break; case PLAY2DOWN: if(Order==CHESS2&&gCursor.y<18) gCursor.y++; break; case PLAY2LEFT: if(Order==CHESS2&&gCursor.x>0) gCursor.x--; break; case PLAY2RIGHT: if(Order==CHESS2&&gCursor.x<18) gCursor.x++; break; } gotoxy(gCursor.x+MAPXOFT,gCursor.y+MAPYOFT); } /*游戏结束处理*/ void EndGame(void) { textmode(C80); } /*显示当前行棋方*/ void ShowOrderMsg(int Order) { gotoxy(6,MAPYOFT+20); textcolor(LIGHTRED); if(Order==CHESS1) cputs("Player1 go!"); else cputs("Player2 go!"); gotoxy(gCursor.x+MAPXOFT,gCursor.y+MAPYOFT); } /*落子正确处理*/ void DoOK(void) { sound(500); delay(70); sound(600); delay(50); sound(1000); delay(100); nosound(); } /*检查用户的按键类别*/ int CheckKey(int press) { if(press==ESCAPE) return KEYEXIT;/*是退出键*/ else if ( ( press==PLAY1DO && gPlayOrder==CHESS1) || ( press==PLAY2DO && gPlayOrder==CHESS2) ) return KEYFALLCHESS;/*是落子键*/ else if ( press==PLAY1UP || press==PLAY1DOWN || press==PLAY1LEFT || press==PLAY1RIGHT || press==PLAY2UP || press==PLAY2DOWN || press==PLAY2LEFT || press==PLAY2RIGHT ) return KEYMOVECURSOR;/*是光标移动键*/ else return KEYINVALID;/*按键无效*/ }

最新推荐

recommend-type

python使用minimax算法实现五子棋

要完整实现五子棋游戏,还需要编写这些部分。 总的来说,Python实现五子棋游戏并结合Minimax算法是一项涉及到策略搜索、状态评估和优化的技术挑战。通过学习和理解这些概念,开发者可以创建出能够智能对弈的游戏...
recommend-type

python五子棋游戏的设计与实现

主要为大家详细介绍了python五子棋游戏的设计与实现,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

python pygame实现五子棋小游戏

`is_win` 函数尚未给出完整实现,它的目的是检查当前棋盘状态是否有一方获胜。通常,这个函数会遍历所有可能的连线方向(水平、垂直、对角线),如果找到五个连续同色的棋子,就返回对应的胜利者(True或False,表示...
recommend-type

文本(2024-06-23 161043).txt

文本(2024-06-23 161043).txt
recommend-type

PSO_VMD_MCKD 基于PSO_VMD_MCKD方法的风机轴承微弱函数.rar

PSO_VMD_MCKD 基于PSO_VMD_MCKD方法的风机轴承微弱故障诊断。为实现 VMD 和 MCKD 的参数自适应选择,采用粒子群优化算法对两种算法中的参数进行优化,确定适应度函数为包络谱峰值因子。该资源中包括了频谱函数和求包络谱函数
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。